Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 99005 by bobhans last updated on 18/Jun/20

Σ_(m = 1) ^∞  Σ_(n = 1) ^∞  (1/(mn(m+n))) ?

m=1n=11mn(m+n)?

Answered by maths mind last updated on 18/Jun/20

Σ_(m≥1) .(1/m^2 )Σ_(n≥1) .(((n+m)−n)/(n(n+m)))  =Σ_(m≥1) (1/m^2 ).Σ_(n≥1) ((1/n)−(1/(n+m)))  =Σ_(m≥1) (1/m^2 ).H_m   =Σ_(m≥1) (H_m /m^2 )  ∫_0 ^1 x^(n−1) ln(1−x)dx=−(H_n /n)  ⇒Σ_(m≥1) (H_m /m^2 )=−∫_0 ^1 Σ_(m≥1) (x^(m−1) /m)ln(1−x)  =∫_0 ^1 −(1/x)(Σ_(m≥1) (x^m /m))ln(1−x)dx  =∫_0 ^1 ((ln^2 (1−x))/x)dx  =∫_0 ^1 ((ln^2 (t))/(1−t))dt    ,ln(t)=−r⇒  =∫_0 ^∞ ((t^2 e^(−t) dt)/(1−e^(−t) ))=∫_0 ^(+∞) ((t^2 dt)/(e^t −1))=Γ(3)ζ(3)  i used ∫_0 ^(+∞) (t^(a−1) /(e^t −1))=Γ(a)ζ(a) for Re(a)>1  we getΓ(3)ζ(3)=2ζ(3)=Σ_(m≥1) .Σ_(n≥1) (1/(mn(n+m)))

m1.1m2n1.(n+m)nn(n+m)=m11m2.n1(1n1n+m)=m11m2.Hm=m1Hmm201xn1ln(1x)dx=Hnnm1Hmm2=01m1xm1mln(1x)=011x(m1xmm)ln(1x)dx=01ln2(1x)xdx=01ln2(t)1tdt,ln(t)=r=0t2etdt1et=0+t2dtet1=Γ(3)ζ(3)iused0+ta1et1=Γ(a)ζ(a)forRe(a)>1wegetΓ(3)ζ(3)=2ζ(3)=m1.n11mn(n+m)

Answered by bemath last updated on 18/Jun/20

∫_0 ^1 ∫_0 ^1 ∫_0 ^1  ((z dxdydz)/((1−xz)(1−yz))) =  ∫_0 ^1 z {∫_0 ^1 (dx/(1−xz)) ∫_0 ^1  (dy/(1−yz)) } dz =  ∫_0 ^1 z {[ ((−ln(1−xz))/z) ]_0 ^1  × [((−ln(1−yz))/z)]_0 ^1 } dz  = ∫_0 ^1  ((( ln(1−z))^2 )/z) dz , set 1−z =t  = ∫_0 ^1  ((( ln(t))^2 )/(1−t)) dt = ∫_0 ^1 (ln (t))^2  Σ_(n=0) ^∞ t^n   = Σ_(n=0) ^∞  ∫_0 ^1  t^n  (ln (t))^2  dt   = 2 Σ_(n=0) ^∞  (1/((n+1)^3 )) = 2 Σ_(n=0) ^∞  (1/n^3 )   = 2 ζ(3) ■

010101zdxdydz(1xz)(1yz)=01z{01dx1xz01dy1yz}dz=01z{[ln(1xz)z]01×[ln(1yz)z]01}dz=01(ln(1z))2zdz,set1z=t=01(ln(t))21tdt=01(ln(t))2n=0tn=n=001tn(ln(t))2dt=2n=01(n+1)3=2n=01n3=2ζ(3)

Commented by maths mind last updated on 18/Jun/20

nice  (1/((n+1).(m+1)(n+m+2)))  just a littel justifaction  ∫_0 ^1 x^n dx.∫_0 ^1 y^m dy.∫_0 ^1 z^(n+m+1) dz  =(1/(n+1)).(1/(m+1)).(1/((n+m+2)))  =∫_0 ^1 z∫_0 ^1 (xz)^n dx.∫_0 ^1 (zy)^m dy.dz  Σ_m .Σ_n ∫_0 ^1 z∫_0 ^1 (xz)^n dx.∫_0 ^1 (yz)^m dy.dz  =∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ((zdxdydz)/((1−xz)(1−yz)))=ΣΣ(1/(nm(n+m)))

nice1(n+1).(m+1)(n+m+2)justalitteljustifaction01xndx.01ymdy.01zn+m+1dz=1n+1.1m+1.1(n+m+2)=01z01(xz)ndx.01(zy)mdy.dzm.n01z01(xz)ndx.01(yz)mdy.dz=010101zdxdydz(1xz)(1yz)=ΣΣ1nm(n+m)

Commented by bemath last updated on 18/Jun/20

great sir

greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com