Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 146735 by qaz last updated on 15/Jul/21

Σ_(n=1) ^∞ ((1+(1/2)+(1/3)+...+(1/n))/((n+1)(n+2)))=?

n=11+12+13+...+1n(n+1)(n+2)=?

Answered by Olaf_Thorendsen last updated on 15/Jul/21

S_N  = Σ_(n=1) ^N (H_n /(n+1))−Σ_(n=1) ^N (H_n /(n+2))  S_N  = Σ_(n=1) ^N ((H_n +(1/(n+1)))/(n+1))−Σ_(n=1) ^N (1/((n+1)^2 ))  −Σ_(n=1) ^N ((H_n +(1/(n+1))+(1/(n+2)))/(n+2))+Σ_(n=1) ^N (1/((n+1)(n+2)))  +Σ_(n=1) ^N (1/((n+2)^2 ))    S_N  = Σ_(n=2) ^(N+1) (H_n /n)−Σ_(n=2) ^(N+1) (1/n^2 )−Σ_(n=3) ^(N+2) (H_n /n)  +Σ_(n=2) ^(N+1) (1/n)−Σ_(n=3) ^(N+2) (1/n)+Σ_(n=3) ^(N+2) (1/n^2 )  S_N  = (H_2 /2)−(H_(n+2) /(n+2))+(1/((n+2)^2 ))−(1/2^2 )+(1/2)−(1/(n+2))    H_n  ∼ lnn+γ ⇒ (H_(n+2) /(n+2)) → 0    Finally S_∞  = ((1+(1/2))/2)−(1/4)+(1/2) = 1

SN=Nn=1Hnn+1Nn=1Hnn+2SN=Nn=1Hn+1n+1n+1Nn=11(n+1)2Nn=1Hn+1n+1+1n+2n+2+Nn=11(n+1)(n+2)+Nn=11(n+2)2SN=N+1n=2HnnN+1n=21n2N+2n=3Hnn+N+1n=21nN+2n=31n+N+2n=31n2SN=H22Hn+2n+2+1(n+2)2122+121n+2Hnlnn+γHn+2n+20FinallyS=1+12214+12=1

Answered by mnjuly1970 last updated on 15/Jul/21

   solution..     we know that:    Σ_(n≥1) ((H_n x^( n+1) )/(n+1)) = (1/2) log^( 2) (1−x )      Σ_(n≥1) (H_n /((n+1)(n+2))) =(1/2) ∫_0 ^( 1) log^2 (x)dx        = (1/2) {[xlog^( 2) (x)]_0 ^( 1) −2 ∫_0 ^( 1) log(x)dx}         = −∫_0 ^( 1) log(x)dx =1....✓

solution..weknowthat:n1Hnxn+1n+1=12log2(1x)n1Hn(n+1)(n+2)=1201log2(x)dx=12{[xlog2(x)]01201log(x)dx}=01log(x)dx=1....

Commented by qaz last updated on 15/Jul/21

Σ_(n=1) ^∞ (H_n /((n+1)(n+2)))=Σ_(n=1) ^∞ H_n ∫_0 ^1 (x^n −x^(n+1) )dx=∫_0 ^1 (−((ln(1−x))/(1−x))+((xln(1−x))/(1−x)))dx  =−∫_0 ^1 ln(1−x)dx=1  −−−−−−−−−−−−−−−  Σ_(n=1) ^∞ H_n x^n =Σ_(n=1) ^∞ Σ_(k=1) ^n (x^n /k)=Σ_(k=1) ^∞ Σ_(n=k) ^∞ (x^n /k)=Σ_(k=1) ^∞ Σ_(n=0) ^∞ (x^(n+k) /k)=(Σ_(k=1) ^∞ (x^k /k))(Σ_(n=0) ^∞ x^n )=−((ln(1−x))/(1−x))

n=1Hn(n+1)(n+2)=n=1Hn01(xnxn+1)dx=01(ln(1x)1x+xln(1x)1x)dx=01ln(1x)dx=1n=1Hnxn=n=1nk=1xnk=k=1n=kxnk=k=1n=0xn+kk=(k=1xkk)(n=0xn)=ln(1x)1x

Terms of Service

Privacy Policy

Contact: info@tinkutara.com