Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 160289 by amin96 last updated on 27/Nov/21

Σ_(n≥1) ^∞ (1/(n(2n+1)^2 ))=?

n11n(2n+1)2=?

Answered by qaz last updated on 27/Nov/21

Σ_(n=1) ^∞ (1/(n(2n+1)^2 ))  =Σ_(n=1) ^∞ ((1/n)−(1/(n+(1/2)))−(2/((2n+1)^2 )))  =H_(1/2) −2((1−2^(−2) )ζ(2)−1)  =4−2ln2−(3/2)ζ(2)

n=11n(2n+1)2=n=1(1n1n+122(2n+1)2)=H1/22((122)ζ(2)1)=42ln232ζ(2)

Answered by mathmax by abdo last updated on 28/Nov/21

we decompose f(x)=(1/(x(2x+1)^2 )) ⇒f(x)=(a/x)+(b/(2x+1))+(c/((2x+1)^2 ))  a=xf(x)∣_(x=0) =1  c=(2x+1)^2 f(x)∣_(x=−(1/2))   =−2  lim_(x→+∞) xf(x)=0=a+(b/2) ⇒(b/2)=−a ⇒b=−2 ⇒  f(x)=(1/x)−(2/(2x+1))−(2/((2x+1)^2 ))  S_n =Σ_(k=1) ^n  (1/(k(2k+1)^2 )) ⇒S_n =Σ_(k=1) ^n f(k)=Σ_(k=1) ^n ((1/k)−(2/(2k+1))−(2/((2k+1)^2 )))  =Σ_(k=1) ^n  (1/k)−2Σ_(k=1) ^n  (1/(2k+1))−2Σ_(k=1) ^n  (1/((2k+1)^2 ))  Σ_(k=1) ^n  (1/k)=H_n   Σ_(k=1) ^n  (1/(2k+1))=(1/3)+(1/5)+...+(1/(2n+1))=1+(1/2)+(1/3)+(1/4)+....+(1/(2n))+(1/(2n+1))  −1−(1/2)−(1/4)−...−(1/(2n))=H_(2n+1) −1−(1/2)H_n   Σ_(k=1) ^n  (1/((2k+1)^2 ))→Σ_(k=1) ^∞  (1/((2k+1)^2 ))=(π^2 /8)−1 due to  Σ (1/k^2 )=(1/4)Σ(1/k^2 )+Σ_(k=0) ^∞  (1/((2k+1)^2 )) ⇒Σ_(k=0) ^∞  (1/((2k+1)^2 ))=(3/4)(π^2 /6)=(π^2 /8)  Σ_(k=1) ^n  (1/k)−2Σ_(k=1) ^n  (1/(2k+1))=H_n −2{H_(2n+1) −1−(1/2)H_n }  =2H_n −2H_(2n+1)  +2∼2(ln(n)+γ)−2(ln(2n+1)+γ)+2  =2ln((n/(2n+1)))+2→2ln((1/2))+2=2−2ln2 ⇒  lim_(n→+∞) S_n =2−2ln2−2{(π^2 /8)−1}  =2−2ln2−(π^2 /4) +2=4−2ln2−(π^2 /4)

wedecomposef(x)=1x(2x+1)2f(x)=ax+b2x+1+c(2x+1)2a=xf(x)x=0=1c=(2x+1)2f(x)x=12=2limx+xf(x)=0=a+b2b2=ab=2f(x)=1x22x+12(2x+1)2Sn=k=1n1k(2k+1)2Sn=k=1nf(k)=k=1n(1k22k+12(2k+1)2)=k=1n1k2k=1n12k+12k=1n1(2k+1)2k=1n1k=Hnk=1n12k+1=13+15+...+12n+1=1+12+13+14+....+12n+12n+111214...12n=H2n+1112Hnk=1n1(2k+1)2k=11(2k+1)2=π281duetoΣ1k2=14Σ1k2+k=01(2k+1)2k=01(2k+1)2=34π26=π28k=1n1k2k=1n12k+1=Hn2{H2n+1112Hn}=2Hn2H2n+1+22(ln(n)+γ)2(ln(2n+1)+γ)+2=2ln(n2n+1)+22ln(12)+2=22ln2limn+Sn=22ln22{π281}=22ln2π24+2=42ln2π24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com