All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 160289 by amin96 last updated on 27/Nov/21
∑∞n⩾11n(2n+1)2=?
Answered by qaz last updated on 27/Nov/21
∑∞n=11n(2n+1)2=∑∞n=1(1n−1n+12−2(2n+1)2)=H1/2−2((1−2−2)ζ(2)−1)=4−2ln2−32ζ(2)
Answered by mathmax by abdo last updated on 28/Nov/21
wedecomposef(x)=1x(2x+1)2⇒f(x)=ax+b2x+1+c(2x+1)2a=xf(x)∣x=0=1c=(2x+1)2f(x)∣x=−12=−2limx→+∞xf(x)=0=a+b2⇒b2=−a⇒b=−2⇒f(x)=1x−22x+1−2(2x+1)2Sn=∑k=1n1k(2k+1)2⇒Sn=∑k=1nf(k)=∑k=1n(1k−22k+1−2(2k+1)2)=∑k=1n1k−2∑k=1n12k+1−2∑k=1n1(2k+1)2∑k=1n1k=Hn∑k=1n12k+1=13+15+...+12n+1=1+12+13+14+....+12n+12n+1−1−12−14−...−12n=H2n+1−1−12Hn∑k=1n1(2k+1)2→∑k=1∞1(2k+1)2=π28−1duetoΣ1k2=14Σ1k2+∑k=0∞1(2k+1)2⇒∑k=0∞1(2k+1)2=34π26=π28∑k=1n1k−2∑k=1n12k+1=Hn−2{H2n+1−1−12Hn}=2Hn−2H2n+1+2∼2(ln(n)+γ)−2(ln(2n+1)+γ)+2=2ln(n2n+1)+2→2ln(12)+2=2−2ln2⇒limn→+∞Sn=2−2ln2−2{π28−1}=2−2ln2−π24+2=4−2ln2−π24
Terms of Service
Privacy Policy
Contact: info@tinkutara.com