Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 100468 by Mikael_786 last updated on 26/Jun/20

Σ_(n=1) ^∞ (n/((2n+1)!))  help me pls

n=1n(2n+1)!helpmepls

Answered by mathmax by abdo last updated on 26/Jun/20

S =(1/2)Σ_(n=0) ^∞  ((2n+1−1)/((2n+1)!)) =(1/2)Σ_(n=0) ^∞  (1/((2n)!))−(1/2)Σ_(n=0) ^∞  (1/((2n+1)!))  we have e^x  +e^(−x)  =Σ_(n=0) ^∞  (x^n /(n!)) +Σ_(n=0) ^∞  (((−1)^n x^n )/(n!)) =Σ_(n=0) ^∞ (1/(n!))(1+(−1)^n )x^n   =2Σ_(n=0) ^∞ (x^(2n) /((2n)!)) ⇒((e^x  +e^(−x) )/2) =Σ_(n=0) ^∞  (x^(2n) /((2n)!)) ⇒Σ_(n=0) ^∞  (1/((2n)!)) =((e+e^(−1) )/2)  e^x −e^(−x)  =Σ_(n=0) ^∞  (1/(n!))(1−(−1)^n )x^n  =2 Σ_(n=0) ^∞  (x^(2n+1) /((2n+1)!)) ⇒  Σ_(n=0) ^∞  (x^(2n+1) /((2n+1)!)) =((e^x −e^(−x) )/2) ⇒Σ_(n=0) ^∞  (1/((2n+1)!)) =((e−e^(−1) )/2) ⇒  S =(1/4)(e+e^(−1) )−(1/4)(e−e^(−1) ) =(1/4)(e+e^(−1) −e+e^(−1) ) =((2e^(−1) )/4) =(1/(2e))  S =(1/(2e))

S=12n=02n+11(2n+1)!=12n=01(2n)!12n=01(2n+1)!wehaveex+ex=n=0xnn!+n=0(1)nxnn!=n=01n!(1+(1)n)xn=2n=0x2n(2n)!ex+ex2=n=0x2n(2n)!n=01(2n)!=e+e12exex=n=01n!(1(1)n)xn=2n=0x2n+1(2n+1)!n=0x2n+1(2n+1)!=exex2n=01(2n+1)!=ee12S=14(e+e1)14(ee1)=14(e+e1e+e1)=2e14=12eS=12e

Commented by Mikael_786 last updated on 27/Jun/20

thank you Sir

thankyouSir

Answered by smridha last updated on 26/Jun/20

ans:(1/(2e)).apply generalised  hypergeometric f^n

ans:12e.applygeneralisedhypergeometricfn

Answered by maths mind last updated on 26/Jun/20

f(x)=Σ_(k≥1) (x^(2n+1) /((2n+1)!))=((e^x −e^(−x) )/2)  ⇒((e^x −e^(−x) )/(2x))=Σ_(n≥1) (x^(2n) /((2n+1)!))  ∂x(1/2)  (((e^x −e^(−x) )/x))∣_(x=1) =Σ_(k≥1) ((2n)/((2n+1)!))  ⇔(1/z)(((e^x +e^(−x) )/x)−((e^x −e^(−x) )/x^2 ))∣_(x=1) =2Σ_(n=1) ^(+∞) (n/((2n+1)!))  ⇔e^(−1) =2Σ(n/((2n+1)!))⇒(1/(2e))=Σ_(n≥1) (n/((2n+1)!))

f(x)=k1x2n+1(2n+1)!=exex2exex2x=n1x2n(2n+1)!x12(exexx)x=1=k12n(2n+1)!1z(ex+exxexexx2)x=1=2+n=1n(2n+1)!e1=2Σn(2n+1)!12e=n1n(2n+1)!

Commented by Mikael_786 last updated on 27/Jun/20

thank you Sir

thankyouSir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com