All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 162001 by SANOGO last updated on 25/Dec/21
natureof:∫0+oosintet−1dt
Answered by mathmax by abdo last updated on 25/Dec/21
Ψ=∫0∞sintet−1dt⇒Ψ=∫0∞e−tsint1−e−tdt=∫0∞e−tsint∑n=0∞e−ntdt=∑n=0∞∫0∞e−(n+1)tsintdtbut∫0∞e−(n+1)tsintdt=Im(∫0∞e−(n+1)t+itdt)and∫0∞e(−(n+1)+i)tdt=[1−(n+1)+ie(−(n+1)+i)t]0∞=−1n+1−i(−1)=1n+1−i=n+1+i(n+1)2+1⇒Ψ=∑n=0∞1(n+1)2+1=∑n=1∞1n2+1etcetteserieestconvergentedoncΨestcv.
Commented by Ar Brandon last updated on 25/Dec/21
∑∞n=11n2+ϕ2=πcoth(πϕ)2ϕ−12ϕ2∑∞n=11n2+1=12(πcoth(π)−1)
Commented by SANOGO last updated on 25/Dec/21
mercibien
Terms of Service
Privacy Policy
Contact: info@tinkutara.com