Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38451 by MJS last updated on 25/Jun/18

new attempt to solve qu. 37630    ∫(dx/((√x)+(√(x+1))+(√(x+2))))=       [t=x+1 → dx=dt]  =∫(dt/((√(t−1))+(√t)+(√(t+1))))=          [((to omit the roots)),(((√a)+(√b)+(√c) must be multiplied with)),(((−(√a)−(√b)+(√c))(−(√a)+(√b)−(√c))((√a)−(√b)−(√c)))),(((1/((√a)+(√b)+(√c)))=((a^(3/2) +b^(3/2) +c^(3/2) +2(√(abc))−((a+b)(√c)+(a+c)(√b)+(b+c)(√a)))/(a^2 +b^2 +c^2 −2(ab+ac+bc))))) ]    =∫((t(√(t−1))+t(√t)+t(√(t+1))+2(√(t−1))−2(√(t+1))−2(√((t−1)t(t+1))))/(3t^2 −4))dt=  =∫((t(√(t−1)))/(3t^2 −4))dt+∫((t(√t))/(3t^2 −4))dt+∫((t(√(t+1)))/(3t^2 −4))dt+2∫((√(t−1))/(3t^2 −4))dt−2∫((√(t+1))/(3t^2 −4))−2∫((√((t−1)t(t+1)))/(3t^2 −4))dt    I think I can solve them all except the last one  so please somebody try  ∫((√((t−1)t(t+1)))/(3t^2 −4))dt=?  I will do the others tomorrow

newattempttosolvequ.37630dxx+x+1+x+2=[t=x+1dx=dt]=dtt1+t+t+1=[toomittherootsa+b+cmustbemultipliedwith(ab+c)(a+bc)(abc)1a+b+c=a3/2+b3/2+c3/2+2abc((a+b)c+(a+c)b+(b+c)a)a2+b2+c22(ab+ac+bc)]=tt1+tt+tt+1+2t12t+12(t1)t(t+1)3t24dt==tt13t24dt+tt3t24dt+tt+13t24dt+2t13t24dt2t+13t242(t1)t(t+1)3t24dtIthinkIcansolvethemallexceptthelastonesopleasesomebodytry(t1)t(t+1)3t24dt=?Iwilldotheotherstomorrow

Commented by math khazana by abdo last updated on 26/Jun/18

changement  t=ch(x)give  ∫  ((√((t−1)t(t+1)))/(3t^2  −4))dt =∫  ((√(sh^2 x chx))/(3ch^2 (x)−4)) sh(x)dx  = ∫   ((sh^2 x(√(chx)))/(3 ch^2 (x)−4)) dx  =_((√(chx)) =u)    ∫  (((u^4 −1)u)/(3u^4 −4))                   (chx=u^2 ⇒x=argch(u^2 )  ⇒  dx= ((2udu)/(√(u^4 −1))) ⇒  I = ∫   (((u^4 −1))/(3u^4 −4))  ((2udu)/(√(u^4 −1)))  = 2∫  ((u(√(u^4 −1)))/(3u^4  −4)) du= 2 ∫  ((u(√(u^4 −1)))/(4(u^4 −1) −u^4 ))du  =_((√(u^4 −1))=x)  2 ∫    (((1+x^2 )^(1/4) x)/(4x^2  −(1+x^2 ))) (x/2)  (1+x^2 )^(−(3/4)) (u^4 =1+x^2 ⇒  u=(1+x^2 )^(1/4)  ⇒ du = (x/2)(1+x^2 )^(−(3/4))   I = ∫      ((x^2   )/((√(1+x^2 ))(3x^2 −1)))dx =...

changementt=ch(x)give(t1)t(t+1)3t24dt=sh2xchx3ch2(x)4sh(x)dx=sh2xchx3ch2(x)4dx=chx=u(u41)u3u44(chx=u2x=argch(u2)dx=2uduu41I=(u41)3u442uduu41=2uu413u44du=2uu414(u41)u4du=u41=x2(1+x2)14x4x2(1+x2)x2(1+x2)34(u4=1+x2u=(1+x2)14du=x2(1+x2)34I=x21+x2(3x21)dx=...

Answered by MJS last updated on 27/Jun/18

∫((t(√(t−1)))/(3t^2 −4))dt=            [u=(√(t−1)) → dt=2(√(t−1))du]  =2∫((u^4 +u^2 )/(3u^4 +6u^2 −1))du=(2/3)∫(1−((3u^2 −1)/(3u^4 +6u^2 −1)))du=  =(2/3)∫du+(2/3)∫(du/(3u^4 +6u^2 −1))−2∫(u^2 /(3u^4 +6u^2 −1))du=         (2/3)∫du=(2/3)u=(2/3)(√(t−1))         (2/3)∫(du/(3u^4 +6u^2 −1))=(2/9)∫(du/(u^4 +2u^2 −(1/3)))=       =(2/9)∫(du/((u^2 +((3−2(√3))/3))(u^2 +((3+2(√3))/3))))=       =(2/9)∫(A/(u^2 +((3−2(√3))/3)))du+(2/9)∫(B/(u^2 +((3+2(√3))/3)))du=       =((√3)/(18))∫(du/(u^2 +((3−2(√3))/3)))−((√3)/(18))∫(du/(u^2 +((3+2(√3))/3)))=                 [∫(dv/(v^2 −p^2 ))=(1/(2p))ln ((v−p)/(v+p)); ∫(dv/(v^2 +q^2 ))=(1/q)arctan (v/q)]       =((√3)/(36))(√(3+2(√3)))ln∣((u−((√3)/3)(√(−3+2(√3))))/(u+((√3)/3)(√(−3+2(√3)))))∣−((√3)/(18))(√(−3+2(√3)))arctan (√(−3+2(√3)))u=       =((√3)/(36))((√(3+2(√3)))ln∣(((√(t−1))−((√3)/3)(√(−3+2(√3))))/((√(t−1))+((√3)/3)(√(−3+2(√3)))))∣−2(√(−3+2(√3)))arctan (√((−3+2(√3))(t−1))))         −2∫(u^2 /(3u^4 +6u^2 −1))du=−(2/3)∫(u^2 /(u^4 +2u^2 −(1/3)))du=       =−(2/3)∫(u^2 /((u^2 +((3−2(√3))/3))(u^2 +((3+2(√3))/3))))du=       =−(2/3)∫(C/(u^2 +((3−2(√3))/3)))du−(2/3)∫(D/(u^2 +((3+2(√3))/3)))du=       =−((2−(√3))/6)∫(du/(u^2 +((3−2(√3))/3)))−((2+(√3))/6)∫(du/(u^2 +((3+2(√3))/3)))=       =−(1/(12))((√(−3+2(√3)))ln∣((u−((√3)/3)(√(−3+2(√3))))/(u+((√3)/3)(√(−3+2(√3)))))∣+2(√(3+2(√3)))arctan (√(−3+2(√3)))u)=       =−(1/(12))((√(−3+2(√3)))ln∣(((√(t−1))−((√3)/3)(√(−3+2(√3))))/((√(t−1))+((√3)/3)(√(−3+2(√3)))))∣+2(√(3+2(√3)))arctan (√((−3+2(√3))(t−1))))  =(2/3)(√(t−1))+((√3)/(18))(√(−3+2(√3)))ln∣(((√(t−1))−((√3)/3)(√(−3+2(√3))))/((√(t−1))+((√3)/3)(√(−3+2(√3)))))∣+((√3)/9)(√(3+2(√3)))arctan (√((−3+2(√3))(t−1)))

tt13t24dt=[u=t1dt=2t1du]=2u4+u23u4+6u21du=23(13u213u4+6u21)du==23du+23du3u4+6u212u23u4+6u21du=23du=23u=23t123du3u4+6u21=29duu4+2u213==29du(u2+3233)(u2+3+233)==29Au2+3233du+29Bu2+3+233du==318duu2+3233318duu2+3+233=[dvv2p2=12plnvpv+p;dvv2+q2=1qarctanvq]=3363+23lnu333+23u+333+233183+23arctan3+23u==336(3+23lnt1333+23t1+333+2323+23arctan(3+23)(t1))2u23u4+6u21du=23u2u4+2u213du==23u2(u2+3233)(u2+3+233)du==23Cu2+3233du23Du2+3+233du==236duu2+32332+36duu2+3+233==112(3+23lnu333+23u+333+23+23+23arctan3+23u)==112(3+23lnt1333+23t1+333+23+23+23arctan(3+23)(t1))=23t1+3183+23lnt1333+23t1+333+23+393+23arctan(3+23)(t1)

Commented by MJS last updated on 27/Jun/18

∫((t(√(t+1)))/(3t^2 −4))dt=       [same procedure as above]  =(2/3)(√(t+1))+((√3)/(18))(√(3+2(√3)))ln∣(((√(t+1))−((√3)/3)(√(3+2(√3))))/((√(t+1))+((√3)/3)(√(3+2(√3)))))∣−((√3)/9)(√(−3+2(√3)))arctan (√((3+2(√3))(t+1)))

tt+13t24dt=[sameprocedureasabove]=23t+1+3183+23lnt+1333+23t+1+333+23393+23arctan(3+23)(t+1)

Commented by MJS last updated on 27/Jun/18

∫((t(√t))/(3t^2 −4))dt=       [ditto]  =(2/3)(√t)+((√(6(√3)))/(18))ln∣(((√t)−((√(6(√3)))/3))/((√t)+((√(6(√3)))/3)))∣−((√(6(√3)))/9)arctan ((√(2(√3)t))/2)

tt3t24dt=[ditto]=23t+6318lnt633t+633639arctan23t2

Commented by MJS last updated on 27/Jun/18

2∫((√(t−1))/(3t^2 −4))dt=  =(1/6)(√(−3+2(√3)))ln∣(((√(t−1))−((√3)/3)(√(−3+2(√3))))/((√(t−1))+((√3)/3)(√(−3+2(√3)))))∣−(1/3)(√(3+2(√3)))arctan (√((−3+2(√3))(t−1)))  −2∫((√(t+1))/(3t^2 −4))dt=  =−(1/6)(√(3+2(√3)))ln∣(((√(t+1))−((√3)/3)(√(3+2(√3))))/((√(t+1))+((√3)/3)(√(3+2(√3)))))∣−(1/3)(√(−3+2(√3)))arctan (√((3+2(√3))(t+1)))

2t13t24dt==163+23lnt1333+23t1+333+23133+23arctan(3+23)(t1)2t+13t24dt==163+23lnt+1333+23t+1+333+23133+23arctan(3+23)(t+1)

Commented by MJS last updated on 27/Jun/18

∫(dt/((√(t−1))+(√t)+(√(t+1))))=  =(2/3)((√(t−1))+(√t)+(√(t+1)))+       +((√(6(√3)))/(18))(ln∣(((√(t−1))−((√3)/3)(√(−3+2(√3))))/((√(t−1))+((√3)/3)(√(−3+2(√3)))))∣+ln∣(((√t)−((√(6(√3)))/3))/((√t)+((√(6(√3)))/3)))∣−ln∣(((√(t+1))−((√3)/3)(√(−3+2(√3))))/((√(t+1))+((√3)/3)(√(−3+2(√3)))))∣)+       −((√(6(√3)))/9)(arctan (√((−3+2(√3))(t−1))) +arctan ((√(2(√3)t))/2) +arctan (√((3+2(√3))(t+1))))−       −2∫((√((t−1)t(t+1)))/(3t^2 −4))dt+C  under construction

dtt1+t+t+1==23(t1+t+t+1)++6318(lnt1333+23t1+333+23+lnt633t+633lnt+1333+23t+1+333+23)+639(arctan(3+23)(t1)+arctan23t2+arctan(3+23)(t+1))2(t1)t(t+1)3t24dt+Cunderconstruction

Commented by math khazana by abdo last updated on 27/Jun/18

sir Mjs you are really tired with this itegral  thank youfor thishard work  you are really  patient...

sirMjsyouarereallytiredwiththisitegralthankyouforthishardworkyouarereallypatient...

Commented by MJS last updated on 27/Jun/18

this integral is my personal nemesis LOL

thisintegralismypersonalnemesisLOL

Terms of Service

Privacy Policy

Contact: info@tinkutara.com