Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122528 by mnjuly1970 last updated on 17/Nov/20

     ...nice  calculus...     Ω =∫_0 ^( (π/2)) xsin(x).cos(x)ln(sin(x).ln(cos(x))dx  =^(???)  (π/(16))−(π^3 /(192)) ✓

...nicecalculus...Ω=0π2xsin(x).cos(x)ln(sin(x).ln(cos(x))dx=???π16π3192

Answered by mindispower last updated on 18/Nov/20

∫_a ^b f(x)dx=(1/2)∫_a ^b (f(a+b−x)+f(x))dx  ⇔=(1/2)∫_0 ^(π/2) .(π/2)sin(x)cos(x)ln(sin(x))ln(cos(x))dx  Ω=(π/4)∫_0 ^(π/2) sin(x)cos(x)ln(sin(x))ln(cos(x))dx  f(a,b)=(π/4)∫_0 ^(π/2) sin(x)cos(x)sin^a (x)cos^b (x)dx  Ω=(∂^2 /(∂a∂b))f(0,0)  f=(π/8).2∫_0 ^(π/2) sin^(2(1+(a/2))−1) (x).cos^(2(1+(b/2))−1) (x)dx  =(π/8)β(1+a,1+b)  (∂/∂b)((∂/∂a))f=(π/8).(∂/∂b).(1/2)β((a/2)+1,(b/2)+1)(Ψ((a/2)+1)−Ψ((1/2)(a+b)+2)  =(π/(32))β((a/2)+1,(b/2)+1)(Ψ((b/2)+1)−Ψ((1/2)(a+b)+2))(Ψ((a/2)+1)−Ψ((1/2)(a+b)+2))  −(π/(32))Ψ^1 ((1/2)(a+b)+2)β((a/2)+1,(b/2)+1)  Ω=(π/(32))β(1,1)(Ψ(1)−Ψ(2))^2 −(π/(32))Ψ^1 (2)β(1,1)  =(π/(32))−(π/(32))Ψ′(2)  Ψ^1 (z)=Σ_(n≥0) (1/((n+z)^2 ))  Ψ^1 (2)=Σ_(n≥0) (1/((n+2)^2 ))=Σ_(n≥1) ((1/n^2 ))−1=(π^2 /6)−1  =(π/(32))−(π/(32))((π^2 /6)−1)  =(𝛑/(16))−(π^3 /(192))

abf(x)dx=12ab(f(a+bx)+f(x))dx⇔=120π2.π2sin(x)cos(x)ln(sin(x))ln(cos(x))dxΩ=π40π2sin(x)cos(x)ln(sin(x))ln(cos(x))dxf(a,b)=π40π2sin(x)cos(x)sina(x)cosb(x)dxΩ=2abf(0,0)f=π8.20π2sin2(1+a2)1(x).cos2(1+b2)1(x)dx=π8β(1+a,1+b)b(a)f=π8.b.12β(a2+1,b2+1)(Ψ(a2+1)Ψ(12(a+b)+2)=π32β(a2+1,b2+1)(Ψ(b2+1)Ψ(12(a+b)+2))(Ψ(a2+1)Ψ(12(a+b)+2))π32Ψ1(12(a+b)+2)β(a2+1,b2+1)Ω=π32β(1,1)(Ψ(1)Ψ(2))2π32Ψ1(2)β(1,1)=π32π32Ψ(2)Ψ1(z)=n01(n+z)2Ψ1(2)=n01(n+2)2=n1(1n2)1=π261=π32π32(π261)=π16π3192

Commented by mnjuly1970 last updated on 18/Nov/20

thank you sir power ...   by using the euler beta function  .grateful .sincerely yours.m.n

thankyousirpower...byusingtheeulerbetafunction.grateful.sincerelyyours.m.n

Commented by mindispower last updated on 18/Nov/20

withe pleasur nice day

withepleasurniceday

Terms of Service

Privacy Policy

Contact: info@tinkutara.com