All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 122528 by mnjuly1970 last updated on 17/Nov/20
...nicecalculus...Ω=∫0π2xsin(x).cos(x)ln(sin(x).ln(cos(x))dx=???π16−π3192✓
Answered by mindispower last updated on 18/Nov/20
∫abf(x)dx=12∫ab(f(a+b−x)+f(x))dx⇔=12∫0π2.π2sin(x)cos(x)ln(sin(x))ln(cos(x))dxΩ=π4∫0π2sin(x)cos(x)ln(sin(x))ln(cos(x))dxf(a,b)=π4∫0π2sin(x)cos(x)sina(x)cosb(x)dxΩ=∂2∂a∂bf(0,0)f=π8.2∫0π2sin2(1+a2)−1(x).cos2(1+b2)−1(x)dx=π8β(1+a,1+b)∂∂b(∂∂a)f=π8.∂∂b.12β(a2+1,b2+1)(Ψ(a2+1)−Ψ(12(a+b)+2)=π32β(a2+1,b2+1)(Ψ(b2+1)−Ψ(12(a+b)+2))(Ψ(a2+1)−Ψ(12(a+b)+2))−π32Ψ1(12(a+b)+2)β(a2+1,b2+1)Ω=π32β(1,1)(Ψ(1)−Ψ(2))2−π32Ψ1(2)β(1,1)=π32−π32Ψ′(2)Ψ1(z)=∑n⩾01(n+z)2Ψ1(2)=∑n⩾01(n+2)2=∑n⩾1(1n2)−1=π26−1=π32−π32(π26−1)=π16−π3192
Commented by mnjuly1970 last updated on 18/Nov/20
thankyousirpower...byusingtheeulerbetafunction.grateful.sincerelyyours.m.n
Commented by mindispower last updated on 18/Nov/20
withepleasurniceday
Terms of Service
Privacy Policy
Contact: info@tinkutara.com