All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 137874 by mnjuly1970 last updated on 07/Apr/21
.......nice.......calculus....evaluate::Ω=∫01(ln(1−x)x)3=?....
Answered by EnterUsername last updated on 07/Apr/21
Ω=∫01(ln(1−x)x)3dx=∫01ln3x(1−x)3dx=[ln3x2(1−x)2−32∫ln2xx(1−x)2dx]01=[ln3x2(1−x)2−32∫(1x+11−x+1(1−x)2)ln2xdx]01=[ln3x2(1−x)2−ln3x2−32∫ln2x1−xdx−32∫ln2x(1−x)2dx]01=−32(∫01ln2x1−xdx+∫01ln2x(1−x)2dx)=−32(−ψ″(1)+2ζ(2))=−32(2ζ(3)+2ζ(2))=−3(ζ(3)+ζ(2))
Commented by EnterUsername last updated on 07/Apr/21
SeeQ137829for∫01ln2x(1−x)2dx=2ζ(2)
Commented by mnjuly1970 last updated on 07/Apr/21
verynicesolutionthanksalotmaster....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com