Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 119570 by mnjuly1970 last updated on 25/Oct/20

               ... ♣_♣ ^♣ nice  calculus♣_♣ ^♣ ...      prove that ::                        Ω=∫_0 ^( ∞) e^(−2x) ln(((1+e^(−x) )/(1−e^(−x) )))=1                          ...★ M.N.1970★...

...nicecalculus...provethat::Ω=0e2xln(1+ex1ex)=1...M.N.1970...

Answered by mindispower last updated on 25/Oct/20

e^(−2x) =e^(−x) ∗e^(−x)   let t=e^(−x) ⇒dt=−e^(−x) dx  ⇔=∫_0 ^1 tln(((1+t)/(1−t)))dt=−∫_0 ^1 tln(((1−t)/(1+t)))dt  x=((1−t)/(1+t))⇒t=((1−x)/(1+x)),dt=((−2)/((1+x)^2 ))dx  ⇔−2∫_0 ^1 ((1−x)/((1+x)^3 ))ln(x)dx  =−2[((1/((1+x)))−(1/((1+x)^2 )))ln(x)]_0 ^1 +2∫((1/((1+x)x))−(1/(x(1+x)^2 )))dx  =2∫_0 ^1 (1/((1+x)^2 ))=2[−(1/((1+x)))]_0 ^1 =2.(1/2)=1

e2x=exexlett=exdt=exdx⇔=01tln(1+t1t)dt=01tln(1t1+t)dtx=1t1+tt=1x1+x,dt=2(1+x)2dx2011x(1+x)3ln(x)dx=2[(1(1+x)1(1+x)2)ln(x)]01+2(1(1+x)x1x(1+x)2)dx=2011(1+x)2=2[1(1+x)]01=2.12=1

Commented by mnjuly1970 last updated on 25/Oct/20

thank you mr power..

thankyoumrpower..

Answered by mathmax by abdo last updated on 25/Oct/20

I =∫_0 ^∞  e^(−2x) ln(((1+e^(−x) )/(1−e^(−x) )))dx ⇒I =∫_0 ^∞ e^(−2x) ln(1+e^(−x) )dx−∫_0 ^∞ e^(−2x) ln(1−e^(−x) )dx  =H−K  H =∫_0 ^∞  e^(−2x) ln(1+e^(−x) )dx =_(e^(−x) =t)   −∫_0 ^1 t^2 ln(1+t)(((−dt)/t))dt  =∫_0 ^1 tln(1+t)dt  =[(t^2 /2)ln(1+t)]_0 ^1 −∫_0 ^1  (t^2 /(2(1+t)))dt  =((ln2)/2)−(1/2)∫_0 ^1 ((t^2 −1+1)/(t+1))dt =((ln2)/2)−(1/2){∫_0 ^1 (t−1)dt+∫_0 ^1  (dt/(t+1))}  =((ln2)/2)−(1/2){[(t^2 /2)−t]_0 ^1  +ln(2)} =−(1/2)(−(1/2))=(1/4)  K=∫_0 ^∞  e^(−2x) ln(1−e^(−x) )dx =_(e^(−x) =t)   −∫_0 ^1  t^2 ln(1−t)(((−dt)/t))  =∫_0 ^1  tln(1−t)dt =[(1/2)(t^2 −1)ln(1−t)]_0 ^1 −∫_0 ^1 ((t^2 −1)/2)×((−1)/(1−t))dt  =−(1/2)∫_0 ^1  (t+1)dt =−(1/2)[(t^2 /2)+t]_0 ^1  =−(1/2)((3/2))=−(3/4) ⇒  I =H−K =(1/4)+(3/4) ⇒ ★ I =1★

I=0e2xln(1+ex1ex)dxI=0e2xln(1+ex)dx0e2xln(1ex)dx=HKH=0e2xln(1+ex)dx=ex=t01t2ln(1+t)(dtt)dt=01tln(1+t)dt=[t22ln(1+t)]0101t22(1+t)dt=ln221201t21+1t+1dt=ln2212{01(t1)dt+01dtt+1}=ln2212{[t22t]01+ln(2)}=12(12)=14K=0e2xln(1ex)dx=ex=t01t2ln(1t)(dtt)=01tln(1t)dt=[12(t21)ln(1t)]0101t212×11tdt=1201(t+1)dt=12[t22+t]01=12(32)=34I=HK=14+34I=1

Commented by mnjuly1970 last updated on 25/Oct/20

thank you mr max..

thankyoumrmax..

Commented by Bird last updated on 25/Oct/20

you are welcome

youarewelcome

Answered by mnjuly1970 last updated on 25/Oct/20

Commented by mnjuly1970 last updated on 25/Oct/20

edittion :  1:  recall :: ln(((1+z)/(1−z)))=2Σ_(n=0) ^∞ (z^(2n+1) /(2n+1))  2 : Ω=^(telescopic series) (1/(2(0)+1))−lim_(n→∞) ((1/(2n+3)))=1               ...m.n.july.1970...

edittion:1:recall::ln(1+z1z)=2n=0z2n+12n+12:Ω=telescopicseries12(0)+1limn(12n+3)=1...m.n.july.1970...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com