Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 128707 by mnjuly1970 last updated on 09/Jan/21

                 ...nice  calculus...  prove  that::         ∫_0 ^( ∞) ((ln(1+ϕ^2 x^2 ))/(1+π^2 x^2 )) dx=ln(((π+ϕ)/π))  ϕ::=  golen ratio...

...nicecalculus...provethat::0ln(1+φ2x2)1+π2x2dx=ln(π+φπ)φ::=golenratio...

Answered by Dwaipayan Shikari last updated on 09/Jan/21

I(a)=∫_0 ^∞ ((log(1+a^2 x^2 ))/(1+π^2 x^2 ))dx ⇒I′(a)=∫_0 ^∞ ((2ax^2 )/((1+a^2 x^2 )(1+π^2 x^2 )))dx  =((2a)/(a^2 −π^2 ))∫_0 ^∞ (1/(1+π^2 x^2 ))−(1/(1+a^2 x^2 ))dx  =((2a)/(a^2 −π^2 ))((1/π).(π/2)−(1/a).(π/2))=(1/(π+a))  I(a)=log(π+a)+C  C=−log(π)    when a=0  I(a)=log(1+(a/π)) ⇒I(ϕ)=log(1+(ϕ/π))

I(a)=0log(1+a2x2)1+π2x2dxI(a)=02ax2(1+a2x2)(1+π2x2)dx=2aa2π2011+π2x211+a2x2dx=2aa2π2(1π.π21a.π2)=1π+aI(a)=log(π+a)+CC=log(π)whena=0I(a)=log(1+aπ)I(φ)=log(1+φπ)

Commented by mnjuly1970 last updated on 09/Jan/21

 short solution but  very nice.thank you...

shortsolutionbutverynice.thankyou...

Commented by Dwaipayan Shikari last updated on 09/Jan/21

With pleasure sir!

Withpleasuresir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com