Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 132877 by mnjuly1970 last updated on 17/Feb/21

             .... nice  calculus...     prove that :    𝛗=∫_0 ^( ∞) ((sin(x).log^2 (x))/x)         =(π/(24))(12γ^( 2) +π^2 ) .....

....nicecalculus...provethat:ϕ=0sin(x).log2(x)x=π24(12γ2+π2).....

Answered by Dwaipayan Shikari last updated on 17/Feb/21

φ(α)=∫_0 ^∞ ((sinx)/x^α )dx  φ(α)=(1/(Γ(α)))∫_0 ^∞ ∫_0 ^∞ t^(α−1) e^(−xt) sin(x)dtdx  =(1/(2iΓ(α)))∫_0 ^∞ ∫_0 ^∞ t^(α−1) e^(−(t−i)x) −t^(α−1) e^(−(t+i)x) dx  =(1/(2iΓ(α)))∫_0 ^∞ (t^(α−1) /(t−i))−(t^(α−1) /(t+i))dt  =(1/(Γ(α)))∫_0 ^∞ (t^(α−1) /(t^2 +1))dt=(1/(2Γ(α)))∫_0 ^∞ (u^((α/2)−1) /((u+1)^(1−(α/2)+(α/2)) ))du  =(1/(2Γ(α))).((Γ((α/2))Γ(1−(α/2)))/(Γ(1)))=(π/(2Γ(α)sin(((πα)/2))))  φ′′(α)∣_(α=1) =∫_0 ^∞ ((sin(x)log^2 (x))/x)dx=  (π/(24))(12γ^2 +π^2 )

ϕ(α)=0sinxxαdxϕ(α)=1Γ(α)00tα1extsin(x)dtdx=12iΓ(α)00tα1e(ti)xtα1e(t+i)xdx=12iΓ(α)0tα1titα1t+idt=1Γ(α)0tα1t2+1dt=12Γ(α)0uα21(u+1)1α2+α2du=12Γ(α).Γ(α2)Γ(1α2)Γ(1)=π2Γ(α)sin(πα2)ϕ(α)α=1=0sin(x)log2(x)xdx=π24(12γ2+π2)

Commented by Dwaipayan Shikari last updated on 17/Feb/21

φ′(α)=−((π^2 /(4Γ(α))).((cos((π/2)α))/(sin^2 ((π/2)α)))+(((π^2 /2)Γ(α).((cos((π/2)α))/(sin^2 ((π/2)α))))/(2Γ^2 (α)))+((πΓ′(α)cosec((π/2)2α))/(2Γ^2 (α))))  φ′(1)=((πγ)/2)

ϕ(α)=(π24Γ(α).cos(π2α)sin2(π2α)+π22Γ(α).cos(π2α)sin2(π2α)2Γ2(α)+πΓ(α)cosec(π22α)2Γ2(α))ϕ(1)=πγ2

Commented by mnjuly1970 last updated on 17/Feb/21

with thanking sir payan...

withthankingsirpayan...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com