All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 142545 by mnjuly1970 last updated on 02/Jun/21
nice.....integralΩ:=∫−∞+∞dx(x2+π2)cosh(x)=?.....
Answered by mindispower last updated on 02/Jun/21
=∫−∞∞2dx(x2+π2)(ex+e−x)=∫−∞∞f(x)dxex+e−x=0⇒e2x=−1⇒xk=(ikπ+iπ2),k∈ZΩ=2iπ(∑∞k=0Res(f,xk)+Res(f,iπ))=2iπ(∑∞k=01(−π2(k+12)2+π2)((−1)ki+22iπ(−2)−1−2π∑∞0(−1)k(k+12)2−1=−1−2π(∑∞k=0(−1)k(k−12)(k+32)−1−1π∑k⩾0(−1)k(k−12)+1π∑k⩾0(−1)kk+32−1−1π(−2−2+∑k⩾2(−1)kk−12)+1π∑k⩾0(−1)kk+32firstsumk→k+2wegetΩ=−1+4π−1π{∑k⩾0(−1)k+2(k+2−12)−∑k⩾0(−1)kk+32}=−1+4π∫−∞∞dxch(x)(x2+π2)=−1+4π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com