Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 179777 by luciferit last updated on 02/Nov/22

p(x)=(1−x)(1+2x)(1−3x)....(1+14x)(1−15x)    the absolute value of the coefficient of the x^2  in the expression?

p(x)=(1x)(1+2x)(13x)....(1+14x)(115x)theabsolutevalueofthecoefficientofthex2intheexpression?

Answered by mr W last updated on 02/Nov/22

p(x)=Π_(k=1) ^(15) [1+(−1)^k kx]  coef. of x^2 :  (1/2)Σ_(k=1) ^(15) {(−1)^k kΣ_(r=1_(r≠k) ) ^(15) (−1)^r r}  =(1/2)Σ_(k=1) ^(15) {(−1)^k kΣ_(r=1) ^(15) (−1)^r r−(−1)^(2k) k^2 }  =(1/2){(Σ_(r=1) ^(15) (−1)^r r)^2 −Σ_(k=1) ^(15) k^2 }  =(1/2){[2+4+8+...+14−(1+3+5+...+15)]^2 −((15×(15+1)×(2×15+1))/6)}  =(1/2){[((7×16)/2)−((8×16)/2)]^2 −((15×16×31)/6)}  =−588  ∣coef. of x^2 ∣=588

p(x)=15k=1[1+(1)kkx]coef.ofx2:1215k=1{(1)kk15r=1rk(1)rr}=1215k=1{(1)kk15r=1(1)rr(1)2kk2}=12{(15r=1(1)rr)215k=1k2}=12{[2+4+8+...+14(1+3+5+...+15)]215×(15+1)×(2×15+1)6}=12{[7×1628×162]215×16×316}=588coef.ofx2∣=588

Terms of Service

Privacy Policy

Contact: info@tinkutara.com