All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 68043 by mhmd last updated on 03/Sep/19
∫π/2πecosx1−ecosxsinxdx
Commented by mathmax by abdo last updated on 03/Sep/19
letI=∫π2πecosx1−ecosxsinxdxvha7gementcosx=−tgiveI=∫01e−t1−e−t(dt)=∫01e−t1−e−tdtafterwedothechangement1−e−t=u⇒1−e−t=u2⇒e−t=1−u2⇒−t=ln(1−u2)⇒t=−ln(1−u2)⇒I=∫01−e−1(1−u2)u×2u1−u2du=2∫01−e−1u2du=23[u3]01−e−1=23{1−e−1}3=23(1−e−1)1−1e=23(1−1e)e−1e=23(e−1e)e−1e⇒I=2(e−1)e−13ee.
Answered by mr W last updated on 03/Sep/19
=−∫π/2πecosx1−ecosxdcosx=∫−10et1−etdt=∫−101−etdet=∫1e11−udu=−∫1e11−ud(1−u)=−23[(1−u)32]1e1=23(1−1e)32
Terms of Service
Privacy Policy
Contact: info@tinkutara.com