Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68043 by mhmd last updated on 03/Sep/19

∫_(π/2) ^π e^(cosx) (√(1−e^(cosx) )) sinx dx

π/2πecosx1ecosxsinxdx

Commented by mathmax by abdo last updated on 03/Sep/19

let I =∫_(π/2) ^π  e^(cosx) (√(1−e^(cosx) ))sinx dx  vha7gement  cosx=−t give  I =∫_0 ^1  e^(−t) (√(1−e^(−t) ))(dt) =∫_0 ^1  e^(−t) (√(1−e^(−t) ))dt   after we do the  changement (√(1−e_ ^(−t) ))=u ⇒1−e^(−t)  =u^2  ⇒e^(−t)  =1−u^2  ⇒  −t =ln(1−u^2 ) ⇒t =−ln(1−u^2 ) ⇒  I =∫_0 ^(√(1−e^(−1) ))     (1−u^2 )u ×((2u)/(1−u^2 ))du =2 ∫_0 ^(√(1−e^(−1) ))    u^(2 ) du  =(2/3)[u^3 ]_0 ^(√(1−e^(−1) ))    =(2/3){(√(1−e^(−1) ))}^3  =(2/3)(1−e^(−1) )(√(1−(1/e)))  =(2/3)(1−(1/e))((√(e−1))/(√e)) =(2/3)(((e−1)/e))((√(e−1))/(√e))   ⇒ I =((2(e−1)(√(e−1)))/(3e(√e))) .

letI=π2πecosx1ecosxsinxdxvha7gementcosx=tgiveI=01et1et(dt)=01et1etdtafterwedothechangement1et=u1et=u2et=1u2t=ln(1u2)t=ln(1u2)I=01e1(1u2)u×2u1u2du=201e1u2du=23[u3]01e1=23{1e1}3=23(1e1)11e=23(11e)e1e=23(e1e)e1eI=2(e1)e13ee.

Answered by mr W last updated on 03/Sep/19

=−∫_(π/2) ^π e^(cosx) (√(1−e^(cosx) )) d cos x  =∫_(−1) ^0 e^t (√(1−e^t )) dt  =∫_(−1) ^0 (√(1−e^t )) de^t   =∫_(1/e) ^1 (√(1−u)) du  =−∫_(1/e) ^1 (√(1−u)) d(1−u)  =−(2/3)[(1−u)^(3/2) ]_(1/e) ^1   =(2/3)(1−(1/e))^(3/2)

=π/2πecosx1ecosxdcosx=10et1etdt=101etdet=1e11udu=1e11ud(1u)=23[(1u)32]1e1=23(11e)32

Terms of Service

Privacy Policy

Contact: info@tinkutara.com