All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 128610 by john_santu last updated on 08/Jan/21
∫−π/4π/4secxex+1dx
Commented by liberty last updated on 09/Jan/21
I=−∫−π/4π/4sec(−x)e−x+1d(−x)I=∫−π/4π/4secxe−x+1dx=∫−π/4π/4(secxe−x(1+ex))dxI=∫−π/4π/4exsecxex+1dxaddingtogethertwoequation2I=∫−π/4π/4secx+exsecxex+1dx=∫−π/4π/4secxdx2I=2∫0π/4secxdxI=ln∣secx+tanx∣]0π/4=ln(1+2)
Answered by mathmax by abdo last updated on 09/Jan/21
I=∫−π4π41cosx(1+ex)dx=x=−t∫−π4π41cost(1+e−t)dt⇒2I=∫−π4π41cosx(11+ex+11+e−x)dx=∫−π4π41cosx(1+e−x+1+ex1+e−x+ex+1)dx=∫−π4π4dxcosx=2∫0π4dxcosx⇒I=∫0π4dxcosx=tan(x2)=t∫02−12dt(1+t2).1−t21+t2=∫02−1(11−t+11+t)dt=[ln∣1+t1−t∣]02−1=ln∣22−2∣
Terms of Service
Privacy Policy
Contact: info@tinkutara.com