Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85097 by jagoll last updated on 19/Mar/20

∫_(−π) ^π  x^(2020)  (sin x+cos x) dx = 8  find ∫_(−π) ^π  x^(2020)  cos x dx = ?

ππx2020(sinx+cosx)dx=8findππx2020cosxdx=?

Answered by john santu last updated on 19/Mar/20

⇒8 = ∫_(−π) ^π x^(2020)  sin x dx + ∫_(−π) ^π x^(2020)  cos x dx  (1) ∫_(−π) ^π x^(2020)  sin x dx = 0   (2) ∫_(−π) ^π x^(2020)  cos x dx = 2∫_0 ^π  x^(2020)  cos x dx  ⇒ 8 = 0 +2 ∫_0 ^π x^(2020)  cos x dx   ⇒ ∫_0 ^π  x^(2020)  cos x dx = 4

8=ππx2020sinxdx+ππx2020cosxdx(1)ππx2020sinxdx=0(2)ππx2020cosxdx=2π0x2020cosxdx8=0+2π0x2020cosxdxπ0x2020cosxdx=4

Commented by jagoll last updated on 19/Mar/20

thank you mister

thankyoumister

Terms of Service

Privacy Policy

Contact: info@tinkutara.com