Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 158405 by Eric002 last updated on 03/Nov/21

prove:  ∫_0 ^∞  (1/(x^5 +x^4 +x^3 +x^2 +x+1))dx=(π/(3(√3)))

prove:01x5+x4+x3+x2+x+1dx=π33

Answered by MJS_new last updated on 03/Nov/21

x^5 +x^4 +x^3 +x^2 +x+1=((x^6 −1)/(x−1))  ⇒  ∫(dx/(x^5 +x^4 +x^3 +x^2 +x+1))=  =∫(dx/((x+1)(x^2 +x+1)(x^2 +x+1)))=  =(1/3)∫(dx/(x+1))+(1/2)∫(dx/(x^2 +x+1))−(1/6)∫((2x−1)/(x^2 −x+1))=  =(1/3)ln ∣x+1∣ +((√3)/3)arctan ((2x+1)/( (√3))) −(1/6)ln (x^2 −x+1) +C  ⇒  ∫_0 ^∞ (dx/(x^5 +x^4 +x^3 +x^2 +x+1))=(π/(3(√3)))

x5+x4+x3+x2+x+1=x61x1dxx5+x4+x3+x2+x+1==dx(x+1)(x2+x+1)(x2+x+1)==13dxx+1+12dxx2+x+1162x1x2x+1==13lnx+1+33arctan2x+1316ln(x2x+1)+C0dxx5+x4+x3+x2+x+1=π33

Commented by Eric002 last updated on 03/Nov/21

well done

welldone

Commented by Tawa11 last updated on 04/Nov/21

Great sir

Greatsir

Answered by Ar Brandon last updated on 03/Nov/21

I=∫_0 ^∞ (dx/(x^5 +x^4 +x^3 +x^2 +x+1))=∫_0 ^∞ ((1−x)/(1−x^6 ))dx    =∫_0 ^1 ((1−x)/(1−x^6 ))dx+∫_1 ^∞ ((1−x)/(1−x^6 ))dx=∫_0 ^1 ((1−x)/(1−x^6 ))dx+∫_0 ^1 ((x^3 −x^4 )/(1−x^6 ))dx    =∫_0 ^1 ((1−x+x^3 −x^4 )/(1−x^6 ))dx=(1/6)∫_0 ^1 ((v^(−(5/6)) −v^(−(4/6)) +v^(−(2/6)) −v^(−(1/6)) )/(1−v))dv    =(1/6)[−ψ((1/6))+ψ((2/6))−ψ((4/6))+ψ((5/6))]    =(1/6)[(ψ((5/6))−ψ((1/6)))+(ψ((1/3))−ψ((2/3)))]    =(1/6)[−πcot((5/6)π)−πcot((π/3))]=(1/6)[π(√3)−(π/( (√3)))]=((2(√3)π)/(18))=((√3)/9)π

I=0dxx5+x4+x3+x2+x+1=01x1x6dx=011x1x6dx+11x1x6dx=011x1x6dx+01x3x41x6dx=011x+x3x41x6dx=1601v56v46+v26v161vdv=16[ψ(16)+ψ(26)ψ(46)+ψ(56)]=16[(ψ(56)ψ(16))+(ψ(13)ψ(23))]=16[πcot(56π)πcot(π3)]=16[π3π3]=23π18=39π

Commented by Ar Brandon last updated on 03/Nov/21

    Φ=∫_1 ^∞ ((1−x)/(1−x^6 ))dx, u=(1/x)⇒x=(1/u)⇒dx=−(1/u^2 )du  ⇒Φ=∫_0 ^1 ((1−(1/u))/(1−(1/u^6 )))∙(du/u^6 )=∫_0 ^1 ((u^4 −u^3 )/(u^6 −1))du=∫_0 ^1 ((x^3 −x^4 )/(1−x^6 ))dx

Φ=11x1x6dx,u=1xx=1udx=1u2duΦ=0111u11u6duu6=01u4u3u61du=01x3x41x6dx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com