All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 218914 by SdC355 last updated on 17/Apr/25
prove∫0∞Jν(αt)Jν(βt)dt=2π⋅sin(π2(α−β))α2−β2∫0∞t⋅Jν(αt)Jν(βt)dt=1α⋅δ(α−β)∫0∞Jν(t)e−stdt=1s2+1(s+s2+1)ν
Answered by MrGaster last updated on 19/Apr/25
(1):prove: ∫0∞Jν(αt)Jν(βt)dt=2π⋅sin(π2(α−β))α2−β2 ∫0∞Jν(αt)Jν(βt)dt ≡∫0∞[1π∫0πcos(νθ−αtsinθ)dθ][1π∫0πcos(νϕ−βtsinϕ)dϕ]dt ≡1π2∫0π∫0π∫0∞cos(νθ−αtsinθ)cos(νϕ−βtsinϕ)dtdθdϕ ≡12π2∫0π∫0π∫0∞[cos(ν(θ+ϕ)−t(αsinθ+βsinϕ))+cos(ν(θ−ϕ)−t(αsinθ−βsinϕ))]dtdθdϕ ≡12π2∫0π∫0π[πδ(αsinθ+βsinϕ)cos(ν(θ+ϕ))+πδ(αsinθ−βsinϕ)cos(ν(θ−ϕ))]dθdϕ ≡12π∫0π∫0πδ(αsinθ−βsinϕ)cos(ν(θ−ϕ))dθdϕ ≡12π∫0πδ(αsinθ−βsinθ)cos(ν(θ−θ))dθ ≡12π∫0πδ((α−β)sinθ)cos(0)dθ ≡12π∫0πδ((α−β)sinθ)dθ ≡12π|α−β|∫0πδ(sinθ)dθ ≡12π|α−β|⋅2 ≡1π|α−β| ∫0∞Jν(αt)Jν(βt)dt=1π|α−β| ∫0∞Jν(αt)Jν(βt)dt ≡2π⋅sin(π2(α−β))α2−β2 ∫0∞Jν(αt)Jν(βt)dt=2π⋅sin(π2(α−β))α2−β2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com