Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 218914 by SdC355 last updated on 17/Apr/25

prove  ∫_0 ^( ∞)  J_ν (αt)J_ν (βt)dt=(2/π)∙((sin((π/2)(α−β)))/(α^2 −β^2 ))  ∫_0 ^( ∞)  t∙J_ν (αt)J_ν (βt)dt=(1/α)∙δ(α−β)  ∫_0 ^( ∞)  J_ν (t)e^(−st) dt=(1/( (√(s^2 +1))(s+(√(s^2 +1)))^ν ))

prove0Jν(αt)Jν(βt)dt=2πsin(π2(αβ))α2β20tJν(αt)Jν(βt)dt=1αδ(αβ)0Jν(t)estdt=1s2+1(s+s2+1)ν

Answered by MrGaster last updated on 19/Apr/25

(1):  \[  \text{prove: }    \]  \[  \int_{0}^{\infty} J_{\nu} (\alpha t) J_{\nu} (\beta t) \, \mathrm{d}t = \frac{2}{\pi} \cdot \frac{\sin\left(\frac{\pi}{2} (\alpha - \beta)\right)}{\alpha^{2} - \beta^{2}}  \]  \[  \int_{0}^{\infty} J_{\nu} (\alpha t) J_{\nu} (\beta t) \, \mathrm{d}t   \]  \[  \equiv \int_{0}^{\infty} \left[\frac{1}{\pi} \int_{0}^{\pi} \cos(\nu \theta - \alpha t \sin \theta) \, \mathrm{d}\theta\right] \left[\frac{1}{\pi} \int_{0}^{\pi} \cos(\nu \phi - \beta t \sin \phi) \, \mathrm{d}\phi\right] \, \mathrm{d}t   \]  \[  \equiv \frac{1}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\infty} \cos(\nu \theta - \alpha t \sin \theta) \cos(\nu \phi - \beta t \sin \phi) \, \mathrm{d}t \, \mathrm{d}\theta \, \mathrm{d}\phi   \]  \[  \equiv \frac{1}{2\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\infty} \left[\cos(\nu (\theta + \phi) - t (\alpha \sin \theta + \beta \sin \phi)) + \cos(\nu (\theta - \phi) - t (\alpha \sin \theta - \beta \sin \phi))\right] \, \mathrm{d}t \, \mathrm{d}\theta \, \mathrm{d}\phi   \]  \[  \equiv \frac{1}{2\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} \left[\pi \delta(\alpha \sin \theta + \beta \sin \phi) \cos(\nu (\theta + \phi)) + \pi \delta(\alpha \sin \theta - \beta \sin \phi) \cos(\nu (\theta - \phi))\right] \, \mathrm{d}\theta \, \mathrm{d}\phi   \]  \[  \equiv \frac{1}{2\pi} \int_{0}^{\pi} \int_{0}^{\pi} \delta(\alpha \sin \theta - \beta \sin \phi) \cos(\nu (\theta - \phi)) \, \mathrm{d}\theta \, \mathrm{d}\phi   \]  \[  \equiv \frac{1}{2\pi} \int_{0}^{\pi} \delta(\alpha \sin \theta - \beta \sin \theta) \cos(\nu (\theta - \theta)) \, \mathrm{d}\theta   \]  \[  \equiv \frac{1}{2\pi} \int_{0}^{\pi} \delta((\alpha - \beta) \sin \theta) \cos(0) \, \mathrm{d}\theta   \]  \[  \equiv \frac{1}{2\pi} \int_{0}^{\pi} \delta((\alpha - \beta) \sin \theta) \, \mathrm{d}\theta   \]  \[  \equiv \frac{1}{2\pi |\alpha - \beta|} \int_{0}^{\pi} \delta(\sin \theta) \, \mathrm{d}\theta   \]  \[  \equiv \frac{1}{2\pi |\alpha - \beta|} \cdot 2   \]  \[  \equiv \frac{1}{\pi |\alpha - \beta|}  \]  \[  \cancel{\int_{0}^{\infty} J_{\nu} (\alpha t) J_{\nu} (\beta t) \, \mathrm{d}t = \frac{1}{\pi |\alpha - \beta|}}  \]  \[  \int_{0}^{\infty} J_{\nu} (\alpha t) J_{\nu} (\beta t) \, \mathrm{d}t   \]  \[  \equiv \frac{2}{\pi} \cdot \frac{\sin\left(\frac{\pi}{2} (\alpha - \beta)\right)}{\alpha^{2} - \beta^{2}}  \]  \[  \begin{array}{|c|}  \hline  \boldsymbol{\int_{0}^{\infty} J_{\nu} (\alpha t) J_{\nu} (\beta t) \, \mathrm{d}t = \frac{2}{\pi} \cdot \frac{\sin\left(\frac{\pi}{2} (\alpha - \beta)\right)}{\alpha^{2} - \beta^{2}}}  \\  \hline  \end{array}  \]

(1):prove:  0Jν(αt)Jν(βt)dt=2πsin(π2(αβ))α2β2 0Jν(αt)Jν(βt)dt 0[1π0πcos(νθαtsinθ)dθ][1π0πcos(νϕβtsinϕ)dϕ]dt 1π20π0π0cos(νθαtsinθ)cos(νϕβtsinϕ)dtdθdϕ 12π20π0π0[cos(ν(θ+ϕ)t(αsinθ+βsinϕ))+cos(ν(θϕ)t(αsinθβsinϕ))]dtdθdϕ 12π20π0π[πδ(αsinθ+βsinϕ)cos(ν(θ+ϕ))+πδ(αsinθβsinϕ)cos(ν(θϕ))]dθdϕ 12π0π0πδ(αsinθβsinϕ)cos(ν(θϕ))dθdϕ 12π0πδ(αsinθβsinθ)cos(ν(θθ))dθ 12π0πδ((αβ)sinθ)cos(0)dθ 12π0πδ((αβ)sinθ)dθ 12π|αβ|0πδ(sinθ)dθ 12π|αβ|2 1π|αβ| 0Jν(αt)Jν(βt)dt=1π|αβ| 0Jν(αt)Jν(βt)dt 2πsin(π2(αβ))α2β2 0Jν(αt)Jν(βt)dt=2πsin(π2(αβ))α2β2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com