All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 150747 by mnjuly1970 last updated on 15/Aug/21
prove::Ω:=∫0∞e−x.ln(x4)=?1−γm.n..
Answered by Olaf_Thorendsen last updated on 15/Aug/21
Ω=∫0∞e−xln(x4)dxΩ=∫0∞e−uln(u)(2udu)Ω=∫0∞ue−ulnuduψ(z)=∫0∞yz−1lnye−ydy∫0∞yz−1e−ydyψ(2)=∫0∞y.lnye−ydy∫0∞ye−ydy=Ω∫0∞ye−ydy∫0∞ue−udu=[−ue−u]0∞+∫0∞e−udu=1⇒Ω=ψ(2)ψ(z+1)=ψ(z)+1zψ(2)=ψ(1)+11=−γ+1Ω=1−γ=ψ(2)
Commented by mnjuly1970 last updated on 16/Aug/21
gratefulmrolaf..
Answered by mathmax by abdo last updated on 17/Aug/21
Ψ=∫0∞e−xln(x14)dx⇒Ψ=x=t∫0∞e−tln(t12)(2t)dt=2∫0∞t2ln(t)e−tdt=∫0∞te−tln(t)dt=∫0∞(tlnt)e−tdtbypartsu=tlntandv′=e−t=[−e−t(tlnt)]0∞−∫0∞(lnt+1)(−e−t)dt=0+∫0∞e−t(1+lnt)dt=∫0∞e−tdt+∫0∞e−tlntdt=1−γ
Terms of Service
Privacy Policy
Contact: info@tinkutara.com