Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 151230 by mnjuly1970 last updated on 19/Aug/21

      prove:     ∫_0 ^( ∞) (( ln ( 1+x^( 2) ))/(x^( 2) (1+x^( 2) )))dx= π ln((e/2) ) ..

prove:0ln(1+x2)x2(1+x2)dx=πln(e2)..

Commented by Lordose last updated on 19/Aug/21

Commented by Lordose last updated on 19/Aug/21

Answered by Lordose last updated on 19/Aug/21

  Ω = ∫_0 ^( 1) ((ln(1+x^2 ))/(x^2 (1+x^2 )))dx =^(P.F)  ∫_0 ^( 1) ((ln(1+x^2 ))/x^2 )dx − ∫_0 ^( 1) ((ln(1+x^2 ))/(1+x^2 ))dx  Ω = Φ − Ψ  Φ =^(IBP) −((ln(1+x^2 ))/x)∣_0^+  ^1  + ∫_0 ^( 1) (2/(1+x^2 ))dx  Φ = −log(2) + (𝛑/2)  Ψ = ∫_0 ^( 1) ((ln(1+x^2 ))/(1+x^2 ))dx =^(x=tan(y)) −2∫_0 ^(𝛑/4) ln(cos(y))dy  Ψ = 2∫_0 ^(𝛑/4) (Σ_(k=1) ^∞ (((−1)^k )/k)cos(2ky) + log(2))dy = 2Σ_(k=1) ^∞ (((−1)^k )/k)∫_0 ^(𝛑/4) cos(2ky)dy + 2log(2)∫_0 ^(𝛑/4) 1dy  Ψ = Σ_(k=1) ^∞ (((−1)^k sin(((𝛑k)/2)))/k^2 ) + ((𝛑log(2))/2)  Ψ = (𝛑/2)log(2) − G  Ω = (𝛑/2) − log(2) − (𝛑/2)log(2) + G  𝛀 = (𝛑/2) − log(2)(1 + (𝛑/2)) + G  G = Catalan′s Constant = Σ_(k=1) ^∞ (((−1)^k sin(((𝛑k)/2)))/k^2 )

Ω=01ln(1+x2)x2(1+x2)dx=P.F01ln(1+x2)x2dx01ln(1+x2)1+x2dxΩ=ΦΨΦ=IBPln(1+x2)x0+1+0121+x2dxΦ=log(2)+π2Ψ=01ln(1+x2)1+x2dx=x=tan(y)20π4ln(cos(y))dyΨ=20π4(k=1(1)kkcos(2ky)+log(2))dy=2k=1(1)kk0π4cos(2ky)dy+2log(2)0π41dyΨ=k=1(1)ksin(πk2)k2+πlog(2)2Ψ=π2log(2)GΩ=π2log(2)π2log(2)+GΩ=π2log(2)(1+π2)+GG=CatalansConstant=k=1(1)ksin(πk2)k2

Commented by mnjuly1970 last updated on 19/Aug/21

   thank you so much mr lordose     my mistake   Ω=∫_0 ^( ∞) ((ln(1+x^( 2) ))/(x^2 (1+x^( 2) )))dx        grateful...

thankyousomuchmrlordosemymistakeΩ=0ln(1+x2)x2(1+x2)dxgrateful...

Answered by qaz last updated on 19/Aug/21

∫_0 ^1 ((ln(1+x^2 ))/(x^2 (1+x^2 )))dx  =∫_0 ^1 ((ln(1+x^2 ))/x^2 )dx−∫_0 ^1 ((ln(1+x^2 ))/(1+x^2 ))dx  =−((ln(1+x^2 ))/x)∣_0 ^1 +∫_0 ^1 (2/(1+x^2 ))dx+2∫_0 ^(π/4) lncos xdx  =−ln2+(π/2)+∫_0 ^(π/2) lncos (x/2)dx  =−ln2+(π/2)+(1/2)∫_0 ^(π/2) ln((1+cos x)/2)dx  =−ln2+(π/2)+(1/2)∫_0 ^(π/2) ln((sin x)/(tan (x/2)))dx−(1/2)∫_0 ^(π/2) ln2dx  =−ln2+(π/2)−(π/2)ln2−∫_0 ^(π/4) lntan xdx  =−ln2+(π/2)−(π/2)ln2−∫_0 ^1 ((lnx)/(1+x^2 ))dx  =−ln2+(π/2)−(π/2)ln2−Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^(2n) lnxdx  =−ln2+(π/2)−(π/2)ln2−Σ_(n=0) ^∞ (((−1)^(n+1) )/((2n+1)^2 ))  =−ln2+(π/2)−(π/2)ln2+G

01ln(1+x2)x2(1+x2)dx=01ln(1+x2)x2dx01ln(1+x2)1+x2dx=ln(1+x2)x01+0121+x2dx+20π/4lncosxdx=ln2+π2+0π/2lncosx2dx=ln2+π2+120π/2ln1+cosx2dx=ln2+π2+120π/2lnsinxtanx2dx120π/2ln2dx=ln2+π2π2ln20π/4lntanxdx=ln2+π2π2ln201lnx1+x2dx=ln2+π2π2ln2n=0(1)n01x2nlnxdx=ln2+π2π2ln2n=0(1)n+1(2n+1)2=ln2+π2π2ln2+G

Answered by Lordose last updated on 19/Aug/21

  Ω = ∫_0 ^( ∞) ((ln(1+x^2 ))/(x^2 (1+x^2 )))dx =^(x=tan(y)) −2∫_0 ^(𝛑/2) cot^2 yln(cos(y))dy  Ω = −2(∂/∂a)∣_(a=2) ∫_0 ^(𝛑/2) cos^a (y)sin^(−2) (y)dy  Ω = −(∂/∂a)∣_(a=2) (B(((a+1)/2),−(1/2))) = −(1/2)(𝛙^((0)) (((a+1)/2))−𝛙^((0)) ((a/2)))B(((a+1)/2),−(1/2))  𝛀 = (1/2)𝛑(𝛄 + 𝛙^((0)) ((3/2)))

Ω=0ln(1+x2)x2(1+x2)dx=x=tan(y)20π2cot2yln(cos(y))dyΩ=2aa=20π2cosa(y)sin2(y)dyΩ=aa=2(B(a+12,12))=12(ψ(0)(a+12)ψ(0)(a2))B(a+12,12)Ω=12π(γ+ψ(0)(32))

Answered by qaz last updated on 19/Aug/21

∫_0 ^∞ ((ln(1+x^2 ))/(x^2 (1+x^2 )))dx  =∫_0 ^(π/2) ((lnsec^2 x)/(tan^2 x))dx  =−2∫_0 ^(π/2) cot^2 xlncos xdx  =2∫_0 ^(π/2) (1−csc^2 x)lncos xdx  =−πln2−2∫_0 ^(π/2) csc^2 xlncos xdx  =−πln2+2cot xlncos x∣_0 ^(π/2) +2∫_0 ^(π/2) dx  =−πln2+π

0ln(1+x2)x2(1+x2)dx=0π/2lnsec2xtan2xdx=20π/2cot2xlncosxdx=20π/2(1csc2x)lncosxdx=πln220π/2csc2xlncosxdx=πln2+2cotxlncosx0π/2+20π/2dx=πln2+π

Commented by mnjuly1970 last updated on 19/Aug/21

thanks alot..

thanksalot..

Commented by peter frank last updated on 19/Aug/21

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com