Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 139036 by mnjuly1970 last updated on 21/Apr/21

           prove ::        š›—=∫_0 ^( āˆž) ((√x)/(x^2 +2x+5))dx=(Ļ€/(2(āˆšĻ•)))        Ļ•:= golden ratio ...

prove::Ļ•=∫0āˆžxx2+2x+5dx=Ļ€2φφ:=goldenratio...

Answered by Dwaipayan Shikari last updated on 21/Apr/21

(1/(4i))∫_0 ^āˆž ((√x)/((x+1āˆ’2i)))āˆ’((√x)/((x+1+2i)))dx  =(1/(2i))∫_0 ^āˆž (t^2 /(t^2 +1āˆ’2i))āˆ’(t^2 /(t^2 +1+2i))dt  =(1/(2i))∫_0 ^āˆž ((2iāˆ’1)/(t^2 +1āˆ’2i))+((2i+1)/(t^2 +1+2i))dt=(Ļ€/(4i))(((2iāˆ’1)/( (√(1āˆ’2i))))+((2i+1)/( (√(1+2i)))))  =(Ļ€/(4i))(āˆ’(√(1āˆ’2i))+(√(1+2i)))=(Ļ€/(4i))(2i(√(((√5)āˆ’1)/2)))=(Ļ€/(2(āˆšĻ•)))  ==  (√(x+(√(āˆ’y))))=(√((x+(√(x^2 +y)))/2))+(√((xāˆ’(√(x^2 +y)))/2))  (√(xāˆ’(√(āˆ’y))))=(√((x+(√(x^2 +y)))/2))āˆ’(√((xāˆ’(√(x^2 +y)))/2))  (√(1+2i))=(√((1+(√5))/2))+i(√(((√5)āˆ’1)/2))  (√(1āˆ’2i))=(√((1+(√5))/2))āˆ’i(√(((√5)āˆ’1)/2))

14i∫0āˆžx(x+1āˆ’2i)āˆ’x(x+1+2i)dx=12i∫0āˆžt2t2+1āˆ’2iāˆ’t2t2+1+2idt=12i∫0āˆž2iāˆ’1t2+1āˆ’2i+2i+1t2+1+2idt=Ļ€4i(2iāˆ’11āˆ’2i+2i+11+2i)=Ļ€4i(āˆ’1āˆ’2i+1+2i)=Ļ€4i(2i5āˆ’12)=Ļ€2φ==x+āˆ’y=x+x2+y2+xāˆ’x2+y2xāˆ’āˆ’y=x+x2+y2āˆ’xāˆ’x2+y21+2i=1+52+i5āˆ’121āˆ’2i=1+52āˆ’i5āˆ’12

Commented by mnjuly1970 last updated on 21/Apr/21

thanks alot...

thanksalot...

Answered by mnjuly1970 last updated on 21/Apr/21

Answered by mathmax by abdo last updated on 21/Apr/21

Φ=∫_0 ^āˆž  ((√x)/(x^2  +2x+5))dx ⇒Φ=_((√x)=t)   ∫_0 ^āˆž  ((t(2t))/(t^4  +2t^2  +5))dt  =∫_(āˆ’āˆž) ^(+āˆž)  (t^2 /(t^4  +2t^2  +5))dt  let w(z)=(z^2 /(z^4  +2z^2  +5))  poles of w!  z^4  +2z^2  +5=0 →x^2  +2x+5=0(t^2 =x)  Ī”=4āˆ’20=āˆ’16 ⇒x_1 =((āˆ’2+i(√(20)))/2) =((āˆ’2+2i(√5))/2)=āˆ’1+i(√5)  x_2 =āˆ’1āˆ’i(√5) ⇒ w(z)=(z^2 /((z^2 +1āˆ’i(√5))(z^2 +1+i(√5))))  =(z^2 /((zāˆ’(√x_1 ))(z+(√x_1 ))(zāˆ’(√x_2 ))(z+(√x_2 ))))  x_1 =(√6)e^(āˆ’iarctan((√5)))    and x_2 =(√6)e^(iarctan((√5)))   ⇒w(z)=(z^2 /((zāˆ’(√(√6))e^(āˆ’(i/2)arctan((√5))) )(z+(√(√6))e^(āˆ’(i/2)arctan((√5))) )(zāˆ’(√(√6))e^((i/2)arctan((√5))) )(z+(√(√6))e^((i/2)arctan((√5))) )))  ∫_(āˆ’āˆž) ^(+āˆž)  w(z)dz =2iĻ€{ Res(w,āˆ’(√(√6))e^(āˆ’(i/2)arctan((√5)))  +Res(w,(√(√6))e^((i/2)arctan((√5))) }  Res(w,(√(√6))e^((i/2)arctan((√5))) ) =(((√6)e^(iarctan((√5))) )/(2(√(√6))e^((i/2)arctan((√5))) (√6)(2isin(arctan((√5))))  =(1/(4i))(e^((i/2)arctan((√5))) /( (√(√6))sin(arctan((√5)))))....be continued...

Φ=∫0āˆžxx2+2x+5dx⇒Φ=x=t∫0āˆžt(2t)t4+2t2+5dt=āˆ«āˆ’āˆž+āˆžt2t4+2t2+5dtletw(z)=z2z4+2z2+5polesofw!z4+2z2+5=0→x2+2x+5=0(t2=x)Ī”=4āˆ’20=āˆ’16⇒x1=āˆ’2+i202=āˆ’2+2i52=āˆ’1+i5x2=āˆ’1āˆ’i5⇒w(z)=z2(z2+1āˆ’i5)(z2+1+i5)=z2(zāˆ’x1)(z+x1)(zāˆ’x2)(z+x2)x1=6eāˆ’iarctan(5)andx2=6eiarctan(5)⇒w(z)=z2(zāˆ’6eāˆ’i2arctan(5))(z+6eāˆ’i2arctan(5))(zāˆ’6ei2arctan(5))(z+6ei2arctan(5))āˆ«āˆ’āˆž+āˆžw(z)dz=2iĻ€{Res(w,āˆ’6eāˆ’i2arctan(5)+Res(w,6ei2arctan(5)}Res(w,6ei2arctan(5))=6eiarctan(5)26ei2arctan(5)6(2isin(arctan(5)=14iei2arctan(5)6sin(arctan(5))....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com