All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 106816 by bemath last updated on 07/Aug/20
provebymathematicalinduction(1)n2⩽2n;n⩾4(2)(n+1)2<2n2;n⩾3(3)2n−3⩾2n−2;n⩾5@bemath@
Commented by bobhans last updated on 07/Aug/20
(2)n2+2n+1<2n2;2n+1<n2;n⩾3P1(n=3)⇒2.3+1<32[true]let:Pk(n=k,k⩾3)⇒2k+1<k2[true]Pk+1(n=k+1)⇒LHS:2(k+1)+1=2k+3=(2k+1)+2<k2+2=k2−2k+1+(1+2k)=(k+1)2+2k+1=
Answered by bobhans last updated on 07/Aug/20
(3)2n−3⩾2n4⇒4.2n−12⩾2n3.2n⩾12⇒2n⩾4⇒n⩾2.wrongtoconditionn⩾5.
Answered by Rio Michael last updated on 07/Aug/20
(1)claim:n2⩽2n;ifn⩾4proveforn=4⇒42=24=16proveforn=6⇒62⩽26Assumethatn=ksatisfiestheclaim.∴k2⩽2k:ifk⩾4provingforn=k+1⇒(k+1)2⩽2k+1⇒k2+2k+1⩽2(2k)butk2⩽2k⇒k2⩽2(2k)alsok2⩾2k∀k∈Zthusk2+2k+1⩽2(2k)ifk⩾3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com