Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 209131 by mahdipoor last updated on 02/Jul/24

prove :  curve  { ((x(t)=((a+r.cos(t))/(a^2 +r^2 +2ar.cos(t))))),((y(t)=((r.sin(t))/(a^2 +r^2 +2ar.cos(t))))) :}    0≤t≤2π  is circle , find center & radius

prove:curve{x(t)=a+r.cos(t)a2+r2+2ar.cos(t)y(t)=r.sin(t)a2+r2+2ar.cos(t)0t2πiscircle,findcenter&radius

Answered by Frix last updated on 02/Jul/24

 { ((cos t =((a−(a^2 +r^2 )x)/((2ax−1)r)))),((y=±((r(√(1−cos^2  t)))/(a^2 +r^2 +2arcos t)))) :}  ⇒  (y−((r(√(1−cos^2  t)))/(a^2 +r^2 +2arcos t)))(y+((r(√(1−cos^2  t)))/(a^2 +r^2 +2arcos t)))=0  ⇔  (x−(a/(a^2 −r^2 )))^2 +y^2 =((r/(a^2 −r^2 )))^2   Center= (((a/(a^2 −r^2 ))),(0) ) , Radius=(r/(a^2 −r^2 ))

{cost=a(a2+r2)x(2ax1)ry=±r1cos2ta2+r2+2arcost(yr1cos2ta2+r2+2arcost)(y+r1cos2ta2+r2+2arcost)=0(xaa2r2)2+y2=(ra2r2)2Center=(aa2r20),Radius=ra2r2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com