All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 20647 by oyshi last updated on 30/Aug/17
proveit,tan(α+π3)+tan(α−π3)=4sin2α1−4sin2α
Answered by $@ty@m last updated on 30/Aug/17
LHS=tanα+tanπ31−tanα.tanπ3+tanα−tanπ31+tanα.tanπ3=tanα+31−3.tanα+tanα−31+3.tanα=(1+3.tanα)(tanα+3)+(1−3.tanα)(tanα−3)(1−3.tanα)(1+3.tanα)=tanα+3tan2α+3tanα+3+tanα−3tan2α−3+3tanα1−3tan2α=8tanα1−3tan2α=4sin2αcos2α−3sin2α(multiplyingNr&Drbycos2α)=4sin2α1−sin2α−3sin2α=4sin2α1−4sin2α=RHS
Terms of Service
Privacy Policy
Contact: info@tinkutara.com