Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 20647 by oyshi last updated on 30/Aug/17

prove it,  tan (α+(π/3))+tan (α−(π/3))=((4sin 2α)/(1−4sin^2 α))

proveit,tan(α+π3)+tan(απ3)=4sin2α14sin2α

Answered by $@ty@m last updated on 30/Aug/17

LHS=((tanα+tan(π/3))/(1−tanα.tan(π/3)))+((tanα−tan(π/3))/(1+tanα.tan(π/3)))  =((tanα+(√3))/(1−(√3).tanα))+((tanα−(√3))/(1+(√3).tanα))  =(((1+(√3).tanα)(tanα+(√3))+(1−(√3).tanα)(tanα−(√3)))/((1−(√3).tanα)(1+(√3).tanα)))  =((tanα+(√3)tan^2 α+3tanα+(√3)+tanα−(√3)tan^2 α−(√3)+3tanα)/(1−3tan^2 α))  =((8tanα)/(1−3tan^2 α))=((4sin2α)/(cos^2 α−3sin^2 α))                          (multiplying N^r  & D^r  by cos^2 α)  =((4sin2α)/(1−sin^2 α−3sin^2 α))  =((4sin 2α)/(1−4sin^2 α))  =RHS

LHS=tanα+tanπ31tanα.tanπ3+tanαtanπ31+tanα.tanπ3=tanα+313.tanα+tanα31+3.tanα=(1+3.tanα)(tanα+3)+(13.tanα)(tanα3)(13.tanα)(1+3.tanα)=tanα+3tan2α+3tanα+3+tanα3tan2α3+3tanα13tan2α=8tanα13tan2α=4sin2αcos2α3sin2α(multiplyingNr&Drbycos2α)=4sin2α1sin2α3sin2α=4sin2α14sin2α=RHS

Terms of Service

Privacy Policy

Contact: info@tinkutara.com