Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 163134 by mnjuly1970 last updated on 04/Jan/22

      prove  or disprove        ∫_(2π) ^( 4π) (( sin(x))/x) dx >0         because   ∫_(2π) ^( 3π) (( sin(x ))/x) dx > ∫_(3π) ^( 4π) ((∣sin(x)∣)/x) dx

proveordisprove2π4πsin(x)xdx>0because2π3πsin(x)xdx>3π4πsin(x)xdx

Answered by mindispower last updated on 04/Jan/22

=∫_0 ^(2π) ((sin(x))/(x+2π))dx=∫_0 ^π ((sin(x))/(x+2π))dx+∫_0 ^π ((−sin(x))/(x+3π))dx  =∫_0 ^π ((πsin(x))/((x+2π)(x+3π)))dx>0  ∫_(3π) ^(4π) ((∣sin(x)∣)/x)dx=∫_0 ^π ((∣sin(x)∣)/(4π−x))dx  ∫_(2π) ^(3π) ((sin(x))/x)dx=∫_0 ^π ((sin(x))/(x+2π))dx  ∫_0 ^π ((sin(x))/(x+2π))dx>∫_0 ^π ((sin(x))/(4π−x))dx...(E) True  x+2π<4π−x true x<π

=02πsin(x)x+2πdx=0πsin(x)x+2πdx+0πsin(x)x+3πdx=0ππsin(x)(x+2π)(x+3π)dx>03π4πsin(x)xdx=0πsin(x)4πxdx2π3πsin(x)xdx=0πsin(x)x+2πdx0πsin(x)x+2πdx>0πsin(x)4πxdx...(E)Truex+2π<4πxtruex<π

Commented by mnjuly1970 last updated on 04/Jan/22

   grateful sir power  perfect

gratefulsirpowerperfect

Commented by mindispower last updated on 04/Jan/22

pleasur sir have nice day

pleasursirhaveniceday

Terms of Service

Privacy Policy

Contact: info@tinkutara.com