Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 83965 by Rio Michael last updated on 08/Mar/20

prove or disprove(with counter−example) that  a) For all two dimensional vectors a,b,c,          a.b = a. c ⇒ b=c.  b) For all positive real numbers a,b.            ((a +b)/2) ≥ (√(ab))

proveordisprove(withcounterexample)thata)Foralltwodimensionalvectorsa,b,c,a.b=a.cb=c.b)Forallpositiverealnumbersa,b.a+b2ab

Commented by mr W last updated on 08/Mar/20

(a)  statement is wrong!  a∙b=∣a∣∣b∣cos β  a∙c=∣a∣∣c∣cos γ  a∙b=a∙c ⇒∣b∣ cos β=∣c∣ cos γ ⇏ b=c  example  a=(1,0)  b=(1,1)  c=(1,2)  a∙b=a∙c=1  but b≠c

(a)statementiswrong!ab=∣a∣∣bcosβac=∣a∣∣ccosγab=ac⇒∣bcosβ=∣ccosγb=cexamplea=(1,0)b=(1,1)c=(1,2)ab=ac=1butbc

Commented by mr W last updated on 08/Mar/20

(b)  for a,b>0:  ((√a)−(√b))^2 ≥0  ⇒a−2(√(ab))+b≥0  ⇒((a+b)/2)≥(√(ab))

(b)fora,b>0:(ab)20a2ab+b0a+b2ab

Commented by Rio Michael last updated on 08/Mar/20

perfect sir, and thanks for the correction

perfectsir,andthanksforthecorrection

Terms of Service

Privacy Policy

Contact: info@tinkutara.com