Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 74799 by mathmax by abdo last updated on 30/Nov/19

prove that 0≤∫_0 ^∞    ((t^2  e^(−nt) )/(e^t −1))dt ≤(1/n^2 )  for n integr not 0

provethat00t2entet1dt1n2fornintegrnot0

Answered by mind is power last updated on 30/Nov/19

∫_0 ^(+∞) ((t^2 e^(−nt) )/(e^t −1))≤(1/n^2 )  =∫_0 ^(+∞) ((t^2 e^(−(n+1)t) )/(1−e^(−t) ))dt  =∫_0 ^(+∞) t^2 .Σ_(k≥0) e^(−t(k+n+1)t) dt    =Σ_(k≥0) ∫_0 ^(+∞) t^2 e^(−(k+n+1)t) dt  =Σ_(k≥0) ∫_0 ^(+∞) ((u^2 e^(−t) )/((k+n+1)^3  ))dt=Σ_(k≥0) (2/((k+n+1)^2 ))  claim  (k+n+1)^3 ≥(k+n+1)^2 (k+n)^2 .(2/((2k+2n+1)))  proff⇔(k+n+1)(((2k+2n+1)/2))≥(k+n)^2  clear  ⇒∀k∈N,∀n∈N^∗   (k+n+1)^3 ≥(k+n+1)^2 (k+n)^2 .(2/(2k+2n+1))  ⇔(2/((k+n+1)^3 ))≤((2k+2n+1)/((k+n+1)^2 (k+n)^2 ))=(((k+n+1)^2 −(k+n)^2 )/((k+n+1)^2 (k+n)^2 ))=(1/((k+n)^2 ))−(1/((k+n+1)^2 ))  ⇒Σ_(k≥0) (2/((k+n+1)^3 ))≤Σ_(k≥0) (1/((k+n)^2 ))−(1/((k+n+1)^2 ))=(1/n^2 )  ⇒∫_0 ^(+∞) ((t^2 e^(−nt) )/(e^t −1))dt<(1/n^2 )  ((t^2 e^(−nt) )/(e^t −1))≥0⇒∫_0 ^(+∞) t^2 (e^(−nt) /(e^t −1))dt>0

0+t2entet11n2=0+t2e(n+1)t1etdt=0+t2.k0et(k+n+1)tdt=k00+t2e(k+n+1)tdt=k00+u2et(k+n+1)3dt=k02(k+n+1)2claim(k+n+1)3(k+n+1)2(k+n)2.2(2k+2n+1)proff(k+n+1)(2k+2n+12)(k+n)2clearkN,nN(k+n+1)3(k+n+1)2(k+n)2.22k+2n+12(k+n+1)32k+2n+1(k+n+1)2(k+n)2=(k+n+1)2(k+n)2(k+n+1)2(k+n)2=1(k+n)21(k+n+1)2k02(k+n+1)3k01(k+n)21(k+n+1)2=1n20+t2entet1dt<1n2t2entet100+t2entet1dt>0

Commented by abdomathmax last updated on 01/Dec/19

thank you sir.

thankyousir.

Commented by mind is power last updated on 02/Dec/19

y′re welcom

yrewelcom

Terms of Service

Privacy Policy

Contact: info@tinkutara.com