All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 210082 by klipto last updated on 30/Jul/24
provethat∫01ln(1−t+tx2)x2−1dx=(sin−1(t))2pleaseanyone..
Answered by Frix last updated on 30/Jul/24
SimplyuseFeynman′sTechnique∫10ln(tx2−t+1)x2−1dx=f(t)f(0)=0f′(t)=∫10∂∂t[ln(tx2−t+1)x2−1]dx==∫10dxtx2−t+1=u=t1−tx=1t1−t∫t1−t0duu2+1==1t1−t[tan−1u]0t1−t=tan−1t1−tt1−t==sin−1tt1−tf(t)=∫sin−1tt1−αtdt=v=sin−1t2∫vdv=v2==(sin−1t)2+Cf(0)=0⇒C=0f(t)=(sin−1t)2
Commented by klipto last updated on 30/Jul/24
thanksmybro
whichpdfdoyouhaveonthisorchannel
Terms of Service
Privacy Policy
Contact: info@tinkutara.com