Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 210082 by klipto last updated on 30/Jul/24

prove that  ∫_0 ^1 ((ln(1−t+tx^2 ))/(x^2 −1))dx=(sin^(−1) ((√t)))^2   please anyone..

provethat01ln(1t+tx2)x21dx=(sin1(t))2pleaseanyone..

Answered by Frix last updated on 30/Jul/24

Simply use Feynman′s Technique  ∫_0 ^1 ((ln (tx^2 −t+1))/(x^2 −1))dx =f(t)  f(0)=0  f′(t)= ∫_0 ^1 (∂/∂t)[((ln (tx^2 −t+1))/(x^2 −1))]dx=  =∫_0 ^1 (dx/(tx^2 −t+1)) =^(u=((√t)/( (√(1−t))))x)   =(1/( (√t)(√(1−t))))∫_0 ^((√t)/( (√(1−t)))) (du/(u^2 +1))=  =(1/( (√t)(√(1−t))))[tan^(−1)  u]_0 ^((√t)/( (√(1−t)))) =((tan^(−1)  ((√t)/( (√(1−t)))))/( (√t)(√(1−t))))=  =((sin^(−1)  (√t))/( (√t)(√(1−t))))  f(t)=∫((sin^(−1)  (√t))/( (√t)(√(1−αt))))dt =^(v=sin^(−1)  (√t))  2∫vdv=v^2 =  =(sin^(−1)  (√t))^2 +C  f(0)=0 ⇒ C=0  f(t)=(sin^(−1)  (√t))^2

SimplyuseFeynmansTechnique10ln(tx2t+1)x21dx=f(t)f(0)=0f(t)=10t[ln(tx2t+1)x21]dx==10dxtx2t+1=u=t1tx=1t1tt1t0duu2+1==1t1t[tan1u]0t1t=tan1t1tt1t==sin1tt1tf(t)=sin1tt1αtdt=v=sin1t2vdv=v2==(sin1t)2+Cf(0)=0C=0f(t)=(sin1t)2

Commented by klipto last updated on 30/Jul/24

thanks my bro

thanksmybro

Commented by klipto last updated on 30/Jul/24

which pdf do you have on this or channel

whichpdfdoyouhaveonthisorchannel

Terms of Service

Privacy Policy

Contact: info@tinkutara.com