All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28999 by abdo imad last updated on 03/Feb/18
provethat∫0∞e−ttdt=eiπ4∫0∞e−ixxdx.
Commented by abdo imad last updated on 04/Feb/18
thech.x=tgive∫0∞e−ixxdx=∫0∞e−it2t2tdt=2∫0∞e−(it)2dtthech.it=u=2∫0∞e−u2dui(ch.it=u)2iπ2=πibuti=eiπ2⇒i=eiπ4⇒eiπ4∫0∞e−ixxdx=eiπ4e−π4π=πfromanothersidethech.t=ugive∫0∞e−ttdt=∫0∞e−u2u(2u)du=2∫0∞e−u2du=2π2=πso∫0∞e−ttdt=eiπ4∫0∞e−ixxdx.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com