Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28999 by abdo imad last updated on 03/Feb/18

prove that  ∫_0 ^∞   (e^(−t) /(√t))dt= e^(i(π/4))   ∫_0 ^∞   (e^(−ix) /(√x))dx.

provethat0ettdt=eiπ40eixxdx.

Commented by abdo imad last updated on 04/Feb/18

 the ch. (√x)=t give ∫_0 ^∞   (e^(−ix) /(√x))dx= ∫_0 ^∞   (e^(−it^2 ) /t) 2tdt  = 2 ∫_0 ^∞  e^(−((√i)t)^2 ) dt   the ch.(√i)t=u  =2 ∫_0 ^∞    e^(−u^2 )  (du/(√i))             (ch.(√i)t=u)   (2/(√i)) ((√π)/2)= ((√π)/(√i))     but       i=e^(i(π/2)) ⇒(√i)= e^(i(π/4))  ⇒   e^(i(π/4))  ∫_0 ^∞    (e^(−ix) /(√x))dx= e^(i(π/4))  e^(−(π/4))     (√π)=(√π)    from another side  the ch. (√t)=u give ∫_0 ^∞   (e^(−t) /(√t))dt= ∫_0 ^∞   (e^(−u^2 ) /u) (2u)du  =2 ∫_0 ^∞  e^(−u^2 ) du=2 ((√π)/2)=(√π)       so  ∫_0 ^∞   (e^(−t) /(√t))dt= e^(i(π/4))   ∫_0 ^∞    (e^(−ix) /(√x))dx.

thech.x=tgive0eixxdx=0eit2t2tdt=20e(it)2dtthech.it=u=20eu2dui(ch.it=u)2iπ2=πibuti=eiπ2i=eiπ4eiπ40eixxdx=eiπ4eπ4π=πfromanothersidethech.t=ugive0ettdt=0eu2u(2u)du=20eu2du=2π2=πso0ettdt=eiπ40eixxdx.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com