Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 17210 by Arnab Maiti last updated on 02/Jul/17

prove that ∫_0 ^( Π) f(sin x)dx=2×∫_0 ^( (Π/2)) f(sin x)dx

provethat0Πf(sinx)dx=2×0Π2f(sinx)dx

Answered by mrW1 last updated on 02/Jul/17

let I=∫_(π/2) ^π f(sin x)dx  t=π−x  x=π−t  sin x=sin (π−t)=sin t  dx=−dt  I=∫_(π/2) ^π f(sin x)dx=∫_(π/2) ^0 f(sin t) (−dt)  =−∫_(π/2) ^0 f(sin t) dt  =∫_0 ^(π/2) f(sin t) dt  =∫_0 ^(π/2) f(sin x) dx    ⇒ ∫_0 ^π f(sin x)dx=∫_0 ^(π/2) f(sin x)dx+∫_(π/2) ^π f(sin x)dx  =∫_0 ^(π/2) f(sin x)dx+∫_0 ^(π/2) f(sin x)dx  =2∫_0 ^(π/2) f(sin x)dx

letI=π2πf(sinx)dxt=πxx=πtsinx=sin(πt)=sintdx=dtI=π2πf(sinx)dx=π20f(sint)(dt)=π20f(sint)dt=0π2f(sint)dt=0π2f(sinx)dx0πf(sinx)dx=0π2f(sinx)dx+π2πf(sinx)dx=0π2f(sinx)dx+0π2f(sinx)dx=20π2f(sinx)dx

Commented by Arnab Maiti last updated on 02/Jul/17

Thank u sir. I really appriciate.

Thankusir.Ireallyappriciate.

Commented by Arnab Maiti last updated on 02/Jul/17

Sir can you give me some more questions   like that ?  Please do.

Sircanyougivemesomemorequestionslikethat?Pleasedo.

Commented by mrW1 last updated on 02/Jul/17

But I don′t have any such questions.

ButIdonthaveanysuchquestions.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com