Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 162535 by mnjuly1970 last updated on 30/Dec/21

       prove that  Ω = ∫_0 ^( ∞) ((  ln ((1/x) ))/( x^( 4)  + 17x^( 2)  + 16)) dx=^?  (π/(60)) ln(2)

provethatΩ=0ln(1x)x4+17x2+16dx=?π60ln(2)

Commented by Ar Brandon last updated on 30/Dec/21

Synthax error, Sir. Your dx is missing.  Haha 😅😁

Synthaxerror,Sir.Yourdxismissing.Haha 😅😁

Commented by amin96 last updated on 30/Dec/21

  very big mistake😂😂

very big mistake😂😂

Commented by mnjuly1970 last updated on 30/Dec/21

 yes you are right sir  ...

yesyouarerightsir...

Answered by Ar Brandon last updated on 24/Mar/22

Ω=∫_0 ^∞ ((ln((1/x)))/(x^4 +17x^2 +16))dx=−∫_0 ^∞ ((lnx)/(x^4 +17x^2 +16))dx  ϕ(z)=(((lnz)^2 )/(z^4 +17z^2 +16)) ,poles:(z^2 +16)(z^2 +1)=0⇒z_1 =4e^((π/2)i) ,z_2 =4e^(−(π/2)i) ,z_3 =e^((π/2)i) ,z_4 =e^(−(π/2)i)   Ω=−(1/2)Re(Res(ϕ, z_1 )+Res(ϕ, z_2 )+Res(ϕ, z_3 )+Res(ϕ, z_4 ))  Res (ϕ, z_1 )=lim_(z→z_1 ) ((((lnz)^2 )/((z−z_2 )(z−z_3 )(z−z_4 ))))=(((ln4+(π/2)i)^2 )/((8i)(3i)(5i)))=(i/(120))(ln^2 4−(π^2 /4)+iπln4)  Res(ϕ, z_2 )=lim_(z→z_2 ) ((((lnz)^2 )/((z−z_1 )(z−z_3 )(z−z_4 ))))=(((ln4−(π/2)i)^2 )/((−8i)(−5i)(−3i)))=−(i/(120))(ln^2 4+(π^2 /4)−iπln4)  Res(ϕ, z_3 )=lim_(z→z_3 ) ((((lnz)^2 )/((z−z_1 )(z−z_2 )(z−z_4 ))))=((((π/2)i)^2 )/((−3i)(5i)(2i)))=(i/(30))((π^2 /4))=i(π^2 /(120))  Res(ϕ,z_4 )=lim_(z→z_4 ) ((((lnz)^2 )/((z−z_1 )(z−z_2 )(z−z_3 ))))=(((−(π/2)i)^2 )/((−5i)(3i)(−2i)))=−(i/(30))((π^2 /4))=−i(π^2 /(120))  Ω=−(1/2)(−((πln4)/(120))−((πln4)/(120)))=((πln4)/(120))=(π/(60))ln(2)

Ω=0ln(1x)x4+17x2+16dx=0lnxx4+17x2+16dxφ(z)=(lnz)2z4+17z2+16,poles:(z2+16)(z2+1)=0z1=4eπ2i,z2=4eπ2i,z3=eπ2i,z4=eπ2iΩ=12Re(Res(φ,z1)+Res(φ,z2)+Res(φ,z3)+Res(φ,z4))Res(φ,z1)=limzz1((lnz)2(zz2)(zz3)(zz4))=(ln4+π2i)2(8i)(3i)(5i)=i120(ln24π24+iπln4)Res(φ,z2)=limzz2((lnz)2(zz1)(zz3)(zz4))=(ln4π2i)2(8i)(5i)(3i)=i120(ln24+π24iπln4)Res(φ,z3)=limzz3((lnz)2(zz1)(zz2)(zz4))=(π2i)2(3i)(5i)(2i)=i30(π24)=iπ2120Res(φ,z4)=limzz4((lnz)2(zz1)(zz2)(zz3))=(π2i)2(5i)(3i)(2i)=i30(π24)=iπ2120Ω=12(πln4120πln4120)=πln4120=π60ln(2)

Commented by mnjuly1970 last updated on 30/Dec/21

   very nice solution ..residues theory..      thanks alot sir brandon..

verynicesolution..residuestheory..thanksalotsirbrandon..

Answered by mindispower last updated on 30/Dec/21

=−∫_0 ^∞ −((ln(x))/((x^2 +16)(x^2 +1)))dx=−(1/(15))∫_0 ^∞ ((ln(x))/(x^2 +1))+((ln(x))/(x^2 +16))dx  =(1/(15))(−∫_0 ^∞ ((ln(x))/(x^2 +1))dx+∫((ln(4y))/(16(y^2 +1)))4y  =−(3/(60))∫_0 ^∞ ((ln(x))/(1+x^2 ))+((ln(4))/(60))∫_0 ^∞ (dx/(1+x^2 ))  ∫_0 ^∞ ((ln(x))/(1+x^2 ))dx,x→(1/x)⇒=−∫_0 ^∞ ((ln(x))/(1+x^2 ))dx  ⇒∫_0 ^∞ ((ln(x))/(1+x^2 ))dx=0  Ω=((ln(4))/(60))∫_0 ^∞ (dx/(1+x^2 ))=((ln(4))/(60))lim_(x→∞) [tan^(−1) (z)]_0 ^x   =((ln(4))/(60)).(π/2)=((πln(2))/(60))

=0ln(x)(x2+16)(x2+1)dx=1150ln(x)x2+1+ln(x)x2+16dx=115(0ln(x)x2+1dx+ln(4y)16(y2+1)4y=3600ln(x)1+x2+ln(4)600dx1+x20ln(x)1+x2dx,x1x⇒=0ln(x)1+x2dx0ln(x)1+x2dx=0Ω=ln(4)600dx1+x2=ln(4)60limx[tan1(z)]0x=ln(4)60.π2=πln(2)60

Terms of Service

Privacy Policy

Contact: info@tinkutara.com