All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27345 by abdo imad last updated on 05/Jan/18
provethat∫0∞tx−1et−1dt=ξ(x)Γ(x)withξ(x)=∑n=1∝1nxandΓ(x)=∫0∞tx−1e−tdt(x>1)
Commented by abdo imad last updated on 07/Jan/18
∫0∝tx−1et−1dt=∫0∝e−ttx−11−e−tdt=∫0∝(∑n=0∝e−nt)e−ttx−1dt=∑n=0∝(∫0∝e−(n+1)ttx−1dt)thech.(n+1)t=ugive∫0∝e−(n+1)ttx−1dt=1n+1∫0∝e−u(un+1)x−1du=1(n+1)x∫0∝e−uux−1du=Γ(x)(n+1)x⇒∫0∝tx−1et−1dt=∑n=0∝(Γ(x)(n+1)x)=(∑n=1∝1nx)Γ(x)=ξ(x).Γ(x).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com