All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 213485 by tri26112004 last updated on 06/Nov/24
provethat122+132+...+120212<2536
Answered by mr W last updated on 06/Nov/24
weknow:π2<101+122+132+...+120212+120222+...=π26therefore:122+132+...+120212=π26−1−(120222+...)<π26−1=6π2−3636<60−3636<61−3636=2536
Answered by issac last updated on 07/Nov/24
provethat122+132+...+120212<2536Let′sStartwitharigorousproofofBaselProblem∑∞j=1(1j)2=π26(Euler′sproofmethod).....1)wealreadyknowsin(z)=∑∞j=0(−)j(2j+1)!z2j+1sinc(z)=sin(z)zsinc(z)=∑∞j=0(−)j(2j+1)!⋅z2jandsolutionofsin(z)z=0isz=nπ,n∈Z∖{0}sowecanrenotesin(z)z=K∏n∈Z∖{0}(1−znπ)KisproportionalConstlimz→0sin(z)z=1andlimz→0K⋅∏∞n=1(1−(znπ)2)=K∏∞n=11=K∴K=1sosin(z)z=∏∞n=1(1−(znπ)2)sin(z)zwas∑∞k=0(−)k(2k+1)!z2kso∑∞k=0(−)k(2k+1)!z2k=∏∞n=1(1−(znπ)2)comparethequadratictermsoftwoequation−16=∑∞n=1(−1n2π2)∴∑∞n=11n2=π26problem122+132+.....120212<2536...??112+122+....120212<1+2536∑2021j=11j2<6136≈1.694444.......wealredyknow∑2021j=11j2<∑∞j=11j2=π26andπ26isapproximatlyπ26≈1.6449340668.......∑2021j=11j2<π26<6136Q.E.D
Terms of Service
Privacy Policy
Contact: info@tinkutara.com