Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 213485 by tri26112004 last updated on 06/Nov/24

prove that  (1/2^2 )+(1/3^2 )+...+(1/(2021^2 ))<((25)/(36))

provethat122+132+...+120212<2536

Answered by mr W last updated on 06/Nov/24

we know:  π^2 <10  1+(1/2^2 )+(1/3^2 )+...+(1/(2021^2 ))+(1/(2022^2 ))+...=(π^2 /6)  therefore:  (1/2^2 )+(1/3^2 )+...+(1/(2021^2 ))=(π^2 /6)−1−((1/(2022^2 ))+...)                                        <(π^2 /6)−1=((6π^2 −36)/(36))                                        <((60−36)/(36))                                        <((61−36)/(36))=((25)/(36))

weknow:π2<101+122+132+...+120212+120222+...=π26therefore:122+132+...+120212=π261(120222+...)<π261=6π23636<603636<613636=2536

Answered by issac last updated on 07/Nov/24

prove that  (1/2^2 )+(1/3^2 )+...+(1/(2021^2 ))<((25)/(36))  Let′s Start with a rigorous proof of  Basel Problem   Σ_(j=1) ^∞  ((1/j))^2 =(π^2 /6)  (Euler′s proof method)  .....1)  we already know sin(z)=Σ_(j=0) ^∞ (((−)^j )/((2j+1)!))z^(2j+1)   sinc(z)=((sin(z))/z)  sinc(z)=Σ_(j=0) ^∞   (((−)^j )/((2j+1)!))∙z^(2j)      and  solution of   ((sin(z))/z)=0 is  z=nπ , n∈Z\{0}  so we can renote  ((sin(z))/z)=KΠ_(n∈Z\{0}) (1−(z/(nπ)))  K is proportional Const  lim_(z→0)  ((sin(z))/z)=1   and lim_(z→0)  K∙Π_(n=1) ^∞  (1−((z/(nπ)))^2 )=KΠ_(n=1) ^∞  1=K  ∴K=1  so  ((sin(z))/z) =Π_(n=1) ^∞  (1−((z/(nπ)))^2 )  ((sin(z))/z) was Σ_(k=0) ^∞  (((−)^k )/((2k+1)!))z^(2k)   so Σ_(k=0) ^∞  (((−)^k )/((2k+1)!))z^(2k) =Π_(n=1) ^∞  (1−((z/(nπ)))^2 )  compare the quadratic terms of   two equation  −(1/6) =Σ_(n=1) ^∞  (−(1/(n^2 π^2 )))  ∴Σ_(n=1) ^∞  (1/n^2 )=(π^2 /6)  problem  (1/2^2 )+(1/3^2 )+.....(1/(2021^2 ))<((25)/(36))...??  (1/1^2 )+(1/2^2 )+....(1/(2021^2 ))<1+((25)/(36))  Σ_(j=1) ^(2021)  (1/j^2 )<((61)/(36))≈1.694444.......  we alredy know Σ_(j=1) ^(2021)  (1/j^2 )<Σ_(j=1) ^∞  (1/j^2 )=(π^2 /6)  and (π^2 /6) is approximatly   (π^2 /6)≈1.6449340668.......  Σ_(j=1) ^(2021)  (1/j^2 )<(π^2 /6)<((61)/(36))  Q.E.D

provethat122+132+...+120212<2536LetsStartwitharigorousproofofBaselProblemj=1(1j)2=π26(Eulersproofmethod).....1)wealreadyknowsin(z)=j=0()j(2j+1)!z2j+1sinc(z)=sin(z)zsinc(z)=j=0()j(2j+1)!z2jandsolutionofsin(z)z=0isz=nπ,nZ{0}sowecanrenotesin(z)z=KnZ{0}(1znπ)KisproportionalConstlimz0sin(z)z=1andlimz0Kn=1(1(znπ)2)=Kn=11=KK=1sosin(z)z=n=1(1(znπ)2)sin(z)zwask=0()k(2k+1)!z2ksok=0()k(2k+1)!z2k=n=1(1(znπ)2)comparethequadratictermsoftwoequation16=n=1(1n2π2)n=11n2=π26problem122+132+.....120212<2536...??112+122+....120212<1+25362021j=11j2<61361.694444.......wealredyknow2021j=11j2<j=11j2=π26andπ26isapproximatlyπ261.6449340668.......2021j=11j2<π26<6136Q.E.D

Terms of Service

Privacy Policy

Contact: info@tinkutara.com