All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 74526 by Kunal12588 last updated on 25/Nov/19
provethat12tan−1x=cos−1(1+1+x221+x2)usingsubstitutionx=cos2θ
Answered by mind is power last updated on 25/Nov/19
missclickithinkisx=tg(2θ)trueforx⩾0x=−1tan−(−1)=−π4weget−π8cos−(x)∈[0,π]sincet→tg(2θ)isbjectionI=]0,π4[→R+⇒∀x∈R∃!θ∈I∣x=tg(2θ)tan−1(tg(2θ))=2θsince2θ∈]0,π2[lHs=θ1+x2=1cos2(2θ)⇒1+x2=1cos(2θ),sincecos(2θ)⩾0overI1+1+x221+x2=1+1cos(2θ)2cos(2θ)=1+cos(2θ)21+cos(2θ)=2cos2(θ)⇒2cos2(θ)2=∣cos(θ)∣=cos(θ)cos−(cos(θ))=θcauseθ∈]0,π4[soθ=θthis⇒∀x⩾0tan−(x)2=cos−1(1+1+x221+x2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com