Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 74526 by Kunal12588 last updated on 25/Nov/19

prove that  (1/2)tan^(−1) x=cos^(−1) ((√((1+(√(1+x^2 )))/(2(√(1+x^2 ))))))  using substitution x=cos 2θ

provethat12tan1x=cos1(1+1+x221+x2)usingsubstitutionx=cos2θ

Answered by mind is power last updated on 25/Nov/19

miss click  i think is x=tg(2θ)  true for x≥0  x=−1  tan^− (−1)=−(π/4)  we get −(π/8)  cos^− (x)∈[0,π]  since  t→tg(2θ) is bjection   I=]0,(π/4)[→R^+   ⇒ ∀x∈R ∃!  θ∈I  ∣  x=tg(2θ)  tan^(−1) (tg(2θ))=2θ   since 2θ∈]0,(π/2)[  lHs =θ  1+x^2 =(1/(cos^2 (2θ)))⇒(√(1+x^2 ))=(1/(cos(2θ))),since cos(2θ)≥0  over I  (√((1+(√(1+x^2 )))/(2(√(1+x^2 )))))=(√((1+(1/(cos(2θ))))/(2/(cos(2θ)))))=(√((1+cos(2θ))/2))  1+cos(2θ)=2cos^2 (θ)⇒(√((2cos^2 (θ))/2))=∣cos(θ)∣=cos(θ)  cos^− (cos(θ))=θ  cause θ∈]0,(π/4)[  so θ=θ   this ⇒∀x≥0  ((tan^− (x))/2)=cos^(−1) (((√(1+(√(1+x^2 ))))/(2(√(1+x^2 )))))

missclickithinkisx=tg(2θ)trueforx0x=1tan(1)=π4wegetπ8cos(x)[0,π]sincettg(2θ)isbjectionI=]0,π4[R+xR!θIx=tg(2θ)tan1(tg(2θ))=2θsince2θ]0,π2[lHs=θ1+x2=1cos2(2θ)1+x2=1cos(2θ),sincecos(2θ)0overI1+1+x221+x2=1+1cos(2θ)2cos(2θ)=1+cos(2θ)21+cos(2θ)=2cos2(θ)2cos2(θ)2=∣cos(θ)∣=cos(θ)cos(cos(θ))=θcauseθ]0,π4[soθ=θthisx0tan(x)2=cos1(1+1+x221+x2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com