All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 158590 by mnjuly1970 last updated on 06/Nov/21
provethat1.I=∫0π2sin(x+tan(x))sin(x)dx=π22.J=∫0π2sin(x−tan(x))sin(x)dx=(1e−12)π
Answered by qaz last updated on 06/Nov/21
I=∫0π/2sinx⋅cos(tanx)+cosx⋅sin(tanx)sinxdx=∫0π/2cos(tanx)+sin(tanx)tanxdx............tanx→x=∫0∞(cosx+sinxx)dx1+x2=∫0∞cosx1+x2+(1x−x1+x2)sinxdx=∫0∞L{cosx}⋅L−1{11+x2}+(1x−x1+x2)sinxdx=∫0∞x1+x2⋅sinx+(1x−x1+x2)⋅sinxdx=π2−−−−−−−−−−−−−−−J=∫0π/2sin(x−tanx)sinxdx=∫0π/2sinx⋅cos(tanx)−cosx⋅sin(tanx)sinxdx=∫0π/2cos(tanx)−sin(tanx)tanxdx.........tanx→x=∫0∞(cosx−sinxx)dx1+x2=∫0∞(2cosx1+x2−sinxx)dx=πe−π2−−−−−−−−−−−∫0∞sinxxdx=∫0∞L{sinx}⋅L−1{1x}dx=∫0∞11+x2⋅1dx=π2−−−−−−−−−−−−∫0∞L{costx}1+x2dx=∫0∞s(s2+x2)(1+x2)dx=π2(1+s)⇒∫0∞cosx1+x2dx=L−1{π2(1+s)}t=1=π2e−1
Commented by puissant last updated on 06/Nov/21
Ω=∫0∞cosxx2+1dx=12∫−∞+∞cosxx2+1dx=12Re(∫−∞+∞eixx2+1dx)=12(2iπ∙res(eixx2+1,+i))Ω=iπ∙limx→+i(eiπx+i)=iπ×e−12i=π2e..Ω=∫0∞cosxx2+1dx=π2e..............Lepuissant............
Terms of Service
Privacy Policy
Contact: info@tinkutara.com