Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 158590 by mnjuly1970 last updated on 06/Nov/21

     prove that   1. I= ∫_0 ^( (π/2)) (( sin( x+tan(x)))/(sin(x)))dx =(π/2)  2. J = ∫_0 ^( (π/2)) ((sin(x−tan(x)))/(sin(x)))dx=((1/e) −(1/2))π

provethat1.I=0π2sin(x+tan(x))sin(x)dx=π22.J=0π2sin(xtan(x))sin(x)dx=(1e12)π

Answered by qaz last updated on 06/Nov/21

I=∫_0 ^(π/2) ((sin x∙cos (tan x)+cos x∙sin (tan x))/(sin x))dx  =∫_0 ^(π/2) cos (tan x)+((sin (tan x))/(tan x))dx............tan x→x  =∫_0 ^∞ (cos x+((sin x)/x))(dx/(1+x^2 ))  =∫_0 ^∞ ((cos x)/(1+x^2 ))+((1/x)−(x/(1+x^2 )))sin xdx  =∫_0 ^∞ L{cos x}∙L^(−1) {(1/(1+x^2 ))}+((1/x)−(x/(1+x^2 )))sin xdx  =∫_0 ^∞ (x/(1+x^2 ))∙sin x+((1/x)−(x/(1+x^2 )))∙sin xdx  =(π/2)  −−−−−−−−−−−−−−−  J=∫_0 ^(π/2) ((sin (x−tan x))/(sin x))dx  =∫_0 ^(π/2) ((sin x∙cos (tan x)−cos x∙sin (tan x))/(sin x))dx  =∫_0 ^(π/2) cos (tan x)−((sin (tan x))/(tan x))dx.........tan x→x  =∫_0 ^∞ (cos x−((sin x)/x))(dx/(1+x^2 ))  =∫_0 ^∞ (((2cos x)/(1+x^2 ))−((sin x)/x))dx  =(π/e)−(π/2)  −−−−−−−−−−−  ∫_0 ^∞ ((sin x)/x)dx=∫_0 ^∞ L{sin x}∙L^(−1) {(1/x)}dx  =∫_0 ^∞ (1/(1+x^2 ))∙1dx=(π/2)  −−−−−−−−−−−−  ∫_0 ^∞ ((L{cos tx})/(1+x^2 ))dx=∫_0 ^∞ (s/((s^2 +x^2 )(1+x^2 )))dx=(π/(2(1+s)))  ⇒∫_0 ^∞ ((cos x)/(1+x^2 ))dx=L^(−1) {(π/(2(1+s)))}_(t=1) =(π/2)e^(−1)

I=0π/2sinxcos(tanx)+cosxsin(tanx)sinxdx=0π/2cos(tanx)+sin(tanx)tanxdx............tanxx=0(cosx+sinxx)dx1+x2=0cosx1+x2+(1xx1+x2)sinxdx=0L{cosx}L1{11+x2}+(1xx1+x2)sinxdx=0x1+x2sinx+(1xx1+x2)sinxdx=π2J=0π/2sin(xtanx)sinxdx=0π/2sinxcos(tanx)cosxsin(tanx)sinxdx=0π/2cos(tanx)sin(tanx)tanxdx.........tanxx=0(cosxsinxx)dx1+x2=0(2cosx1+x2sinxx)dx=πeπ20sinxxdx=0L{sinx}L1{1x}dx=011+x21dx=π20L{costx}1+x2dx=0s(s2+x2)(1+x2)dx=π2(1+s)0cosx1+x2dx=L1{π2(1+s)}t=1=π2e1

Commented by puissant last updated on 06/Nov/21

Ω=∫_0 ^∞ ((cosx)/(x^2 +1))dx = (1/2)∫_(−∞) ^(+∞) ((cosx)/(x^2 +1))dx  = (1/2)Re(∫_(−∞) ^(+∞) (e^(ix) /(x^2 +1))dx) = (1/2)(2iπ•res((e^(ix) /(x^2 +1)),+i))  Ω = iπ•lim_(x→+i) ((e^(iπ) /(x+i)))=iπ×(e^(−1) /(2i)) = (π/(2e))..                  Ω = ∫_0 ^∞ ((cosx)/(x^2 +1)) dx = (π/(2e))..                          ............Le puissant............

Ω=0cosxx2+1dx=12+cosxx2+1dx=12Re(+eixx2+1dx)=12(2iπres(eixx2+1,+i))Ω=iπlimx+i(eiπx+i)=iπ×e12i=π2e..Ω=0cosxx2+1dx=π2e..............Lepuissant............

Terms of Service

Privacy Policy

Contact: info@tinkutara.com