All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 8359 by Nayon last updated on 09/Oct/16
provethat10divides1110−1
Commented by Rasheed Soomro last updated on 09/Oct/16
Actually10divides11n−1forn⩾011n−1=(10+1)n−1Allthetermsoftheexpansionof(10+1)ncontain10asafactorexceptthelastterm1.Soallthetermsofexpansionof′(10+1)n−1′contain10asafactor.Or10∣(11n−1).
Answered by Rasheed Soomro last updated on 12/Oct/16
10divides1110−1−−−−−−−−−−−−−−−−−−−−−1110−1=(10+1)10−1=(100)(10)10+(101)(10)9+...+(109)(10)+(1010)(10)0−1=(10){(100)(10)9+(101)(10)8+...+(109)(10)0}+(1010)(10)0−1=(10){(100)(10)9+(101)(10)8+...+(109)(10)0}+1−1=(10){(100)(10)9+(101)(10)8+...+(109)(1)}10isafactorof1110−1Or10∣(1110−1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com