Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 206858 by Ghisom last updated on 27/Apr/24

prove that  H_n =∫_0 ^1  ((t^n −1)/(t−1))dt

provethatHn=10tn1t1dt

Answered by mathzup last updated on 28/Apr/24

I_ξ =∫_ξ ^1 ((t^n −1)/(t−1))dt  we have H_n =lim_(ξ→0^+ )  I_ξ   but I_ξ =∫_ξ ^1 (((t−1)(1+t+t^2 +....+t^(n−1) ))/(t−1))dt  =∫_ξ ^1 (1+t+t^2 +....+t^(n−1) )dt  =[t+(t^2 /2)+(t^3 /3)+....+(t^n /n)]_ξ ^1   =1+(1/2)+(1/3)+....+(1/n)−(ξ+(ξ^2 /2) +....+(ξ^n /n))  ⇒lim_(ξ→0)   I_ξ =1+(1/2)+(1/3)+....+(1/n)=H_n

Iξ=ξ1tn1t1dtwehaveHn=limξ0+IξbutIξ=ξ1(t1)(1+t+t2+....+tn1)t1dt=ξ1(1+t+t2+....+tn1)dt=[t+t22+t33+....+tnn]ξ1=1+12+13+....+1n(ξ+ξ22+....+ξnn)limξ0Iξ=1+12+13+....+1n=Hn

Commented by Ghisom last updated on 28/Apr/24

thank you

Answered by JDamian last updated on 28/Apr/24

((t^n −1)/(t−1))=1+t+t^2 + ∙∙∙ +t^(n−1)    G.P.  ∫_0 ^1  1+t+t^2 + ∙∙∙ +t^(n−1)  dt=  = [t+(t^2 /2)+(t^3 /3)+ ∙∙∙ +(t^n /n)]_0 ^1 =  =(1+(1/2)+(1/3)+ ∙∙∙ +(1/n))−(0+0+ ∙∙∙ +0)=  = 1+(1/2)+(1/3)+ ∙∙∙ +(1/n) = H_n    ■

tn1t1=1+t+t2++tn1G.P.101+t+t2++tn1dt==[t+t22+t33++tnn]01==(1+12+13++1n)(0+0++0)==1+12+13++1n=Hn

Commented by Ghisom last updated on 28/Apr/24

thank you

Terms of Service

Privacy Policy

Contact: info@tinkutara.com