All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 159681 by mnjuly1970 last updated on 20/Nov/21
provethat:P=∏∞n=1(1−1n(n+2))=?−2sin(π2)πm.n
Answered by mindispower last updated on 21/Nov/21
∏mn=1(1−1n(n+2))=∏mn=1(n+1−2)(n+1+2)n(n+2)=2.Γ(m+2−2)Γ(m+2+2)Γ(m+1)Γ(m+3)Γ(2+2)Γ(2−2)Γ(1+2)=2Γ(2)⇔2Γ(m+2−2)Γ(m+2+2)m!.(m+2)!Γ(2)Γ(1−2).2.(1−2)(1+2)=−2πsin(π2).Γ(m+2−2)Γ(m+2+2)m!.(m+2)!Γ(z+a)∼2π.za−12+ze−zz=m+2Γ(m+2−2)Γ(m+2+2)∼2π.(m+2)2m+3e−2(m+2)Γ(m+3)Γ(m+1)∼2π(m+3)m+52(m+1)m+12e−2m−4limm→∞Γ(m+2−2)Γ(m+2+2)m!.(m+2)!=limm→∞(m+2)2m+3(m+1)m+12(m+3)m+52=limm→∞((m+2)2m2+4m+3)m=limm→∞.(1+1m2+4m+3)m=1⇒∏n⩾1(1−1n(n+2))=limm→∞∏mn=1(1−1n(n+2))=−2.sin(π2)π.limm→∞.Γ(m+2−2)Γ(m+2+2)Γ(m+1)Γ(m+3)=−2.sin(π2)π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com