Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 207620 by Ghisom last updated on 21/May/24

prove that ∫_(−a) ^a  (dx/(x^n +1+(√(x^(2n) +1))))=a

provethataadxxn+1+x2n+1=a

Answered by Berbere last updated on 21/May/24

∫_(−a) ^a ((x^n +1−(√(1+x^(2n) )))/(2x^n ))=U_n   =∫_(−a) ^a (1/2)+((1−(√(1+x^(2n) )))/(2x^n ))=a+∫_(−a) ^a (1/2)+∫_(−a) ^a ((1−(√(1+x^(2n) )))/(2x^n ))dx  =a+(1/2)∫_(−a) ^a ((1−(√(1+x^(2n) )))/(2x^n ))dx  ⇒∀n∈N∫_(−a) ^a ((1−(√(1+x^(2n) )))/(2x^n ))=0 you can see it if  n=2k  ((1−(√(1+x^(2n) )))/(2x^n ))0  <;∀x∈R−{0}  ⇒∫_(−a) ^a ((1−(√(1+x^(2n) )))/(2x^n ))<0≠0 only if a=0  The resulta is true if n=2k+1;k∈N  f^∗ = { ((((1−(√(1+x^(2n) )))/(2x^n ))=x≠0;n=2k+1;k∈N)),((=0 if x=0)) :}  f^∗ (−x)=−f(x);∀x∈R  ∫_(−a) ^a f^∗ (x)dx=0⇒U_(2n+1) =a

aaxn+11+x2n2xn=Un=aa12+11+x2n2xn=a+aa12+aa11+x2n2xndx=a+12aa11+x2n2xndxnNaa11+x2n2xn=0youcanseeitifn=2k11+x2n2xn0<;xR{0}aa11+x2n2xn<00onlyifa=0Theresultaistrueifn=2k+1;kNf={11+x2n2xn=x0;n=2k+1;kN=0ifx=0f(x)=f(x);xRaaf(x)dx=0U2n+1=a

Commented by Ghisom last updated on 21/May/24

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com