All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 207620 by Ghisom last updated on 21/May/24
provethat∫a−adxxn+1+x2n+1=a
Answered by Berbere last updated on 21/May/24
∫−aaxn+1−1+x2n2xn=Un=∫−aa12+1−1+x2n2xn=a+∫−aa12+∫−aa1−1+x2n2xndx=a+12∫−aa1−1+x2n2xndx⇒∀n∈N∫−aa1−1+x2n2xn=0youcanseeitifn=2k1−1+x2n2xn0<;∀x∈R−{0}⇒∫−aa1−1+x2n2xn<0≠0onlyifa=0Theresultaistrueifn=2k+1;k∈Nf∗={1−1+x2n2xn=x≠0;n=2k+1;k∈N=0ifx=0f∗(−x)=−f(x);∀x∈R∫−aaf∗(x)dx=0⇒U2n+1=a
Commented by Ghisom last updated on 21/May/24
thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com