All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 204702 by mnjuly1970 last updated on 25/Feb/24
provethat:cl(Q×Q)=?R2note:(X,d)isametricspace,A⊆X:x∈A−=cl(A)⇔∀r>0,Br(x)∩A≠ϕ
Answered by witcher3 last updated on 25/Feb/24
Q−=Rcl(Q∗Q)⊂Cl(Q−∗Q−)=R2letx(a,b)∈R2=(x⇒∃Un,Vn∈Qun→a;vn→b⇒∀ϵ>0∃N;∀n⩾N;∣Un−a∣<ϵ;∀ϵ′>0∃N′∈N;∀n⩾N′∣Vn−b∣<0.....(1)sinceweareinfinitedimensilmletsdefindAmetric?overR2d((x,y);(x′,y′))=max(∣x−x′∣;∣y−y′∣)letr>0βr(x)∩Cl(Q2)r>0withe1∃N1,N2∣un−a∣<r;∀n⩾N1∣un−b∣<r;∀n⩾N2tackN=max(N1,N2);∀n⩾Nd((un,vn);(a,b))=max(∣un−a∣;∣vn−b∣)<r⇒(a,b)∈cl(Q2)⇒IR2⊂Cl(Q2)⇒equalitt
Commented by mnjuly1970 last updated on 25/Feb/24
thanksalotsirwhicher
Commented by witcher3 last updated on 25/Feb/24
withepleasurbarakalahFikoum
Terms of Service
Privacy Policy
Contact: info@tinkutara.com