Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 162073 by mnjuly1970 last updated on 26/Dec/21

      prove that     Ω =∫_(−∞) ^( +∞) (( cos (x))/((2+ 2x +x^( 2) )^( 2) )) dx = (π/e) cos(1)

provethatΩ=+cos(x)(2+2x+x2)2dx=πecos(1)

Answered by mindispower last updated on 26/Dec/21

Ω=∫_(−∞) ^∞ ((cos(x))/((1+(1+x)^2 )^2 ))dx  1+x=t  =∫_(−∞) ^∞ ((cos(t−1))/((1+t^2 )^2 ))dt=∫_(−∞) ^∞ ((cos(t)cos(1))/((1+t^2 )^2 ))dt+sin(1)∫_(−∞) ^∞ ((sin(t))/((1+t^2 )^2 ))dt_(=0)   =cos(1)∫_(−∞) ^∞ ((cos(t)dt)/((1+t^2 )^2 ))  f(a)=∫_(−∞) ^∞ ((cos(t))/(a^2 +t^2 ))=Re∫_(−∞) ^∞ (e^(it) /(a^2 +t^2 ))=Re(2iπ.e^(−a) .(1/(2ia)))  =(π/a)e^(−a) =f(a)  f′(a)=∫_(−∞) ^∞ ((−2acos(t))/((a^2 +t^2 )^2 ))dt  f′(1)=−2∫_(−∞) ^∞ ((cos(t)dt)/((1+t^2 )^2 ))  f′(a)=(−(π/a^2 )e^(−a) −(π/a)e^(−a) )  ∫_(−∞) ^∞ ((cos(t)dt)/((1+t^2 )^2 ))=(1/2).((2π)/e)=(π/e)  ∫_(−∞) ^∞ ((cost))/((2+2t+t^2 )^2 ))dt=cos(1)∫((cos(x))/((1+x^2 )^2 ))dx=cos(1)(π/e)

Ω=cos(x)(1+(1+x)2)2dx1+x=t=cos(t1)(1+t2)2dt=cos(t)cos(1)(1+t2)2dt+sin(1)sin(t)(1+t2)2dt=0=cos(1)cos(t)dt(1+t2)2f(a)=cos(t)a2+t2=Reeita2+t2=Re(2iπ.ea.12ia)=πaea=f(a)f(a)=2acos(t)(a2+t2)2dtf(1)=2cos(t)dt(1+t2)2f(a)=(πa2eaπaea)cos(t)dt(1+t2)2=12.2πe=πecost)(2+2t+t2)2dt=cos(1)cos(x)(1+x2)2dx=cos(1)πe

Commented by Tawa11 last updated on 26/Dec/21

Great sir

Greatsir

Commented by mnjuly1970 last updated on 26/Dec/21

   excellent solution sir power...

excellentsolutionsirpower...

Answered by Mathspace last updated on 26/Dec/21

Υ=∫_(−∞) ^(+∞)  ((cosx)/((x^2 +2x+2)^2 ))dx  Υ=Re(∫_(−∞) ^(+∞)  (e^(ix) /((x^2 +2x+2)^2 ))dx)  let f(z)=(e^(iz) /((z^2 +2z+2)^2 )) poles of f?  z^(2 ) +2z+2=0→Δ^′ =1−2=−1 ⇒  z_1 =−1+i  and z_2 =−1−i  ∫_R f(z)dz =2iπRes(f,z_1 )  z_1 pole double ⇒  Res(f,z_1 )=lim_(z→z_1 )  (1/((2−1)!)){(z−z_1 )^2 f(z)}^((1))   =lim_(z→z_1 )    { (e^(iz) /((z−z_2 )^2 ))}^((1))   =lim_(z→z_1 )    ((ie^(iz) (z−z_2 )^2 −2(z−z_2 )e^(iz) )/((z−z_2 )^4 ))  =lim_(z→z_1 )    (({i(z−z_2 )−2}e^(iz) )/((z−z_2 )^3 ))  =(({i(z_1 −z_2 )−2}e^(iz1) )/((z_1 −z_2 )^3 ))  =(({i(2i)−2}e^(i(−1+i)) )/((2i)^3 ))  =(({−2−2}e^(−1) {cos(1)−isin(1)})/(−8i))  =(1/(4i))e^(−1) {cos(1)−isin(1)} ⇒  ∫_(−∞) ^(+∞) f(z)dz=((2iπ)/(4i))e^(−1) {cos(1)−isin(1)}  =(π/2)e^(−1) {cos(1)−isin(1)}  and Υ=Re(...)  =(π/(2e))cos(1)

Υ=+cosx(x2+2x+2)2dxΥ=Re(+eix(x2+2x+2)2dx)letf(z)=eiz(z2+2z+2)2polesoff?z2+2z+2=0Δ=12=1z1=1+iandz2=1iRf(z)dz=2iπRes(f,z1)z1poledoubleRes(f,z1)=limzz11(21)!{(zz1)2f(z)}(1)=limzz1{eiz(zz2)2}(1)=limzz1ieiz(zz2)22(zz2)eiz(zz2)4=limzz1{i(zz2)2}eiz(zz2)3={i(z1z2)2}eiz1(z1z2)3={i(2i)2}ei(1+i)(2i)3={22}e1{cos(1)isin(1)}8i=14ie1{cos(1)isin(1)}+f(z)dz=2iπ4ie1{cos(1)isin(1)}=π2e1{cos(1)isin(1)}andΥ=Re(...)=π2ecos(1)

Commented by mnjuly1970 last updated on 26/Dec/21

thanks alot master

thanksalotmaster

Answered by Ar Brandon last updated on 24/Mar/22

Ω=∫_(−∞) ^(+∞) ((cosx)/((x^2 +2x+2)^2 ))dx  ϕ(z)=(e^(iz) /((z^2 +2z+2)^2 ))    ,   Poles: z_1 =((−2+2i)/2)=(√2)e^(((3π)/4)i) , z_2 =(√2)e^(−(π/4)i)   Ω=Re∫_(−∞) ^(+∞) ϕ(z)dz=Re(2iπRes(ϕ, z_1 ))  Res (ϕ, z_1 )=lim_(z→z_1 ) (d/dz){(z−z_1 )^2 ϕ(z)}=lim_(z→z_1 ) (d/dz){(e^(iz) /((z−z_2 )^2 ))}  =lim_(z→z_1 ) {((ie^(iz) (z−z_2 )^2 −2e^(iz) (z−z_2 ))/((z−z_2 )^4 ))}=((ie^(iz_1 ) (z_1 −z_2 )^2 −2e^(iz_1 ) (z_1 −z_2 ))/((z_1 −z_2 )^4 ))  =((ie^(i(−1+i)) (2i)^2 −2e^(i(−1+i)) (2i))/(16))=−((4ie^(−(1+i)) +4ie^(−(1+i)) )/(16))  =−(1/(2e))×e^(((π/2)−1)i) =−(1/(2e))(sin(1)+icos(1))  ⇒Re(2iπRes(ϕ, z_1 )=(π/e)cos(1)  ⇒ determinant (((∫_(−∞) ^(+∞) ((cosx)/((x^2 +2x+2)^2 ))dx=(π/e)cos(1))))

Ω=+cosx(x2+2x+2)2dxφ(z)=eiz(z2+2z+2)2,Poles:z1=2+2i2=2e3π4i,z2=2eπ4iΩ=Re+φ(z)dz=Re(2iπRes(φ,z1))Res(φ,z1)=limzz1ddz{(zz1)2φ(z)}=limzz1ddz{eiz(zz2)2}=limzz1{ieiz(zz2)22eiz(zz2)(zz2)4}=ieiz1(z1z2)22eiz1(z1z2)(z1z2)4=iei(1+i)(2i)22ei(1+i)(2i)16=4ie(1+i)+4ie(1+i)16=12e×e(π21)i=12e(sin(1)+icos(1))Re(2iπRes(φ,z1)=πecos(1)+cosx(x2+2x+2)2dx=πecos(1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com