All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 66245 by aliesam last updated on 11/Aug/19
provethat∫exdx=ex+c
Commented by Rio Michael last updated on 11/Aug/19
lety=exdydx=ex∫dydx=∫exdx⇒y=ex+c
Commented by mathmax by abdo last updated on 11/Aug/19
∫exdx=∫(∑n=0∞xnn!)dx=∑n=0∞1n!∫xndx=∑n=0∞1n!1n+1xn+1+c=∑n=0∞xn+1(n+1)!+c=∑n=1∞xnn!+c=∑n=0∞xnn!+c−1=ex+C(C=c−1)
Answered by mr W last updated on 12/Aug/19
sinced(ex+c)dx=d(ex)dx+d(c)dx=ex+0=ex⇒∫exdx=ex+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com