Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26242 by abdo imad last updated on 22/Dec/17

prove that  Σ_(k=0) ^(k=n)   cos^2 (kx)= ((n+1)/2)  + ((sin((n+1)x)cos(nx))/(2 sinx))  x from R−{ kπ.kεZ}then find the value of integral  ∫_0 ^π   ((sin((n+1)x)cos(nx))/(sinx))dx

provethatk=0k=ncos2(kx)=n+12+sin((n+1)x)cos(nx)2sinxxfromR{kπ.kεZ}thenfindthevalueofintegral0πsin((n+1)x)cos(nx)sinxdx

Commented by abdo imad last updated on 28/Dec/17

Σ_(k=0) ^(k=n)  cos^2 (kx)=(1/2) Σ_(k=0) ^(k=n ) (1+cos(2kx))  = ((n+1)/2)+ (1/2) Σ_(k=0) ^n cos(2kx) but    Σ_(k=0) ^(k=n) cos(2kx) =Re(  Σ_(k=0) ^(k=n)  e^(i2kx)  )  = Re(((1−e^(i2(n+1)x) )/(1− e^(i2x) ))) but   ((1−e^(i2(n+1)x) )/(1−e^(i2x) )) = ((1−cos2(n+1)x −isin(2(n+1)x))/(1 −cos(2x)−isin(2x)))  =(( 2sin^2 (n+1)x −2isin(n+1)x cos(n+1)x)/(2sin^2 x −2i sinx cosx))  = ((−isin(n+1)x( cos(n+1)x +isin(n+1)x))/(−isinx( cosx +i sinx)))  = ((sin(n+1)x)/(sinx)) e^(i(n+1)x)  e^(−ix) = ((sin(n+1)x)/(sinx)) e^(inx)   = ((sin(n+1)x)/(sinx))cos(nx) +i ((sin(n+1)x sin(nx))/(sinx))  ⇒  Re( Σ_(k=0) ^(k=n)  e^(i2kx) )=  ((sin(n+1)x cos(nx))/(sinx))  ⇒ Σ_(k=0) ^(k=n)  cos^2 (kx)= ((n+1)/2)+  ((sin(n+1)x cos(nx))/(2sinx))  ∫_0 ^π ((sin(n+1)x cos(nx))/(2sinx))dx= Σ_(k=>) ^n ∫_0 ^π cos^2 (kx)dx−(((n+1)π)/2)  = (1/2)Σ_(k=0) ^(k=n) ∫_0 ^π (1+ cos(2kx))dx −(((n+1)π)/2)  = (1/2) Σ_(k=0) ^(k=n)  ∫_0 ^π cos(2kx)dx = (π/2)+ Σ_(k=1) ^(k=n) [(1/(2k)) sin(2kx)]_(k=0) ^(k=π=)   =(π/2) +0 = (π/2)⇒  ∫_0 ^π ((sin(n+1)x cos(nx))/(sinx))dx =π

k=0k=ncos2(kx)=12k=0k=n(1+cos(2kx))=n+12+12k=0ncos(2kx)butk=0k=ncos(2kx)=Re(k=0k=nei2kx)=Re(1ei2(n+1)x1ei2x)but1ei2(n+1)x1ei2x=1cos2(n+1)xisin(2(n+1)x)1cos(2x)isin(2x)=2sin2(n+1)x2isin(n+1)xcos(n+1)x2sin2x2isinxcosx=isin(n+1)x(cos(n+1)x+isin(n+1)x)isinx(cosx+isinx)=sin(n+1)xsinxei(n+1)xeix=sin(n+1)xsinxeinx=sin(n+1)xsinxcos(nx)+isin(n+1)xsin(nx)sinxRe(k=0k=nei2kx)=sin(n+1)xcos(nx)sinxk=0k=ncos2(kx)=n+12+sin(n+1)xcos(nx)2sinx0πsin(n+1)xcos(nx)2sinxdx=k=>n0πcos2(kx)dx(n+1)π2=12k=0k=n0π(1+cos(2kx))dx(n+1)π2=12k=0k=n0πcos(2kx)dx=π2+k=1k=n[12ksin(2kx)]k=0k=π==π2+0=π20πsin(n+1)xcos(nx)sinxdx=π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com