All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 26242 by abdo imad last updated on 22/Dec/17
provethat∑k=0k=ncos2(kx)=n+12+sin((n+1)x)cos(nx)2sinxxfromR−{kπ.kεZ}thenfindthevalueofintegral∫0πsin((n+1)x)cos(nx)sinxdx
Commented by abdo imad last updated on 28/Dec/17
∑k=0k=ncos2(kx)=12∑k=0k=n(1+cos(2kx))=n+12+12∑k=0ncos(2kx)but∑k=0k=ncos(2kx)=Re(∑k=0k=nei2kx)=Re(1−ei2(n+1)x1−ei2x)but1−ei2(n+1)x1−ei2x=1−cos2(n+1)x−isin(2(n+1)x)1−cos(2x)−isin(2x)=2sin2(n+1)x−2isin(n+1)xcos(n+1)x2sin2x−2isinxcosx=−isin(n+1)x(cos(n+1)x+isin(n+1)x)−isinx(cosx+isinx)=sin(n+1)xsinxei(n+1)xe−ix=sin(n+1)xsinxeinx=sin(n+1)xsinxcos(nx)+isin(n+1)xsin(nx)sinx⇒Re(∑k=0k=nei2kx)=sin(n+1)xcos(nx)sinx⇒∑k=0k=ncos2(kx)=n+12+sin(n+1)xcos(nx)2sinx∫0πsin(n+1)xcos(nx)2sinxdx=∑k=>n∫0πcos2(kx)dx−(n+1)π2=12∑k=0k=n∫0π(1+cos(2kx))dx−(n+1)π2=12∑k=0k=n∫0πcos(2kx)dx=π2+∑k=1k=n[12ksin(2kx)]k=0k=π==π2+0=π2⇒∫0πsin(n+1)xcos(nx)sinxdx=π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com