All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 140050 by mnjuly1970 last updated on 03/May/21
provethat::ϕ:=limn→∞n2k.1−cosk(2πn)=π................
Answered by Kamel last updated on 04/May/21
Answered by Dwaipayan Shikari last updated on 03/May/21
n2k1−cosk(2πn)≈2n2k1−(1−2π2k2!n2)=2nπ2k.kn=π
Answered by mnjuly1970 last updated on 04/May/21
prove::.............1n=t−⇒{t→0+n→∞ϕ:=limt→0+12k(1t)1−cosk(2πt):=limt→0+12k(1t){1−cos(2πt).1+cos(2πt)+...+cosk−1(2πt):=limt→0+12k(1t){2sin2(πt).1+cos(πt)+...+cosk−1(2πt)}:=limt→0+2sin(πt)2k[1+1+1+....+1]:=ktimes........ϕ:=π.......
Terms of Service
Privacy Policy
Contact: info@tinkutara.com