Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 76367 by Rio Michael last updated on 26/Dec/19

prove that  Σ_(r=1) ^∞  (1/r^2 ) = (π^2 /6)

provethatr=11r2=π26

Commented by mathmax by abdo last updated on 26/Dec/19

not correct

notcorrect

Commented by mathmax by abdo last updated on 26/Dec/19

i think Σ_(r=1) ^∞  (1/r^2 )

ithinkr=11r2

Commented by Rio Michael last updated on 26/Dec/19

thanks i′ll correct that

thanksillcorrectthat

Commented by mathmax by abdo last updated on 28/Dec/19

let f(x)=∣x∣ ,2π periodic even  f(x) =(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)  a_n =(2/T)∫_([T]) ∣x∣ cos(nx) =(1/π)∫_(−π) ^π  ∣x∣ cos(nx)dx  =(2/π) ∫_0 ^π  x cos(nx)dx ⇒(π/2)a_n =∫_0 ^π  x cos(nx)  =_(by parts)   [(x/n)sin(nx)]_0 ^π  −∫_0 ^π (1/n)sin(nx)dx  =−(1/n)[−(1/n)cos(nx)]_0 ^π  =(1/n^2 ){(−1)^n −1) ⇒  a_n =(2/(πn^2 )){ (−1)^n −1}  a_0 =(2/π)×(π^2 /2)=π ⇒∣x∣ =(π/2) +(2/π)Σ_(n=1) ^∞  (((−1)^n −1)/n^2 )cos(nx)  =(π/2) +(2/π)(−2) Σ_(p=0) ^∞  (1/((2p+1)^2 ))cos(2p+1)x  =(π/2)−(4/π) Σ_(p=0) ^∞   ((cos(2p+1)x)/((2p+1)^2 ))  x=0 ⇒(π/2)−(4/π) Σ_(p=0) ^∞  (1/((2p+1)^2 )) =0 ⇒(4/π)Σ_(p=0) ^∞  (1/((2p+1)^2 )) =(π/2) ⇒  Σ_(p=0) ^∞  (1/((2p+1)^2 )) =(π^2 /8)  Σ_(n=1) ^∞  (1/n^2 ) =Σ_(n=1) ^∞  (1/(4n^2 )) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒  (3/4) Σ_(n=1) ^∞  (1/n^2 ) =(π^2 /8) ⇒ Σ_(n=1) ^∞  (1/n^2 ) =(4/3)×(π^2 /8) =(π^2 /6) .

letf(x)=∣x,2πperiodicevenf(x)=a02+n=1ancos(nx)an=2T[T]xcos(nx)=1πππxcos(nx)dx=2π0πxcos(nx)dxπ2an=0πxcos(nx)=byparts[xnsin(nx)]0π0π1nsin(nx)dx=1n[1ncos(nx)]0π=1n2{(1)n1)an=2πn2{(1)n1}a0=2π×π22=π⇒∣x=π2+2πn=1(1)n1n2cos(nx)=π2+2π(2)p=01(2p+1)2cos(2p+1)x=π24πp=0cos(2p+1)x(2p+1)2x=0π24πp=01(2p+1)2=04πp=01(2p+1)2=π2p=01(2p+1)2=π28n=11n2=n=114n2+n=01(2n+1)234n=11n2=π28n=11n2=43×π28=π26.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com