Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 183420 by mokys last updated on 25/Dec/22

prove that Σ_(x=0) ^∞  ((4^x  . x)/(x!)) = 4 e^4

provethatx=04x.xx!=4e4

Answered by Ar Brandon last updated on 25/Dec/22

Σ_(x=0) ^∞ ((4^x x)/(x!))=Σ_(x=1) ^∞ ((4^x x)/(x!))=4Σ_(x=1) ^∞ (4^(x−1) /((x−1)!))=4Σ_(x=0) ^∞ (4^x /(x!))=4e^4

x=04xxx!=x=14xxx!=4x=14x1(x1)!=4x=04xx!=4e4

Answered by mr W last updated on 26/Dec/22

Σ_(n=0) ^∞ (x^n /(n!))=e^x   Σ_(n=0) ^∞ ((nx^(n−1) )/(n!))=e^x   ⇒Σ_(n=0) ^∞ ((nx^n )/(n!))=xe^x   set x=4:  Σ_(n=0) ^∞ ((4^n n)/(n!))=4e^4   or  Σ_(x=0) ^∞ ((4^x x)/(x!))=4e^4

n=0xnn!=exn=0nxn1n!=exn=0nxnn!=xexsetx=4:n=04nnn!=4e4orx=04xxx!=4e4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com