All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 28371 by abdo imad last updated on 24/Jan/18
provethatx2−2xcosθ+1dividex2n−2xncos(nθ)+1
Commented by abdo imad last updated on 25/Jan/18
letputpn(x)=x2n−2xncos(nθ)+1andt(x)=x2−2xcosθ+1rootsoft(x)?Δ=4cos2θ−4=−4sin2θ=(2isinθ)2z1=2cosθ+2isinθ2=eiθandz2=e−iθletprovethatpn(z1)=0andpn(z2)=0wehavepn(z1)=ei2nθ−2einθeinθ+e−inθ2+1=ei2nθ−ei2nθ−1+1=0pn(z2)=e−i2nθ−2e−inθeinθ+e−inθ2+1=e−i2nθ−1−e−i2nθ+1=0allrootsoft(x)arerootsofpn(x)⇒t(x)dividepn(x).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com