All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 29000 by abdo imad last updated on 03/Feb/18
provethst∫Reiξx1+x2dx=πe−∣ξ∣.
Commented by abdo imad last updated on 04/Feb/18
letputI=∫−∞+∞eiξx1+x2dxcase1forξ⩾0letputf(z)=eiξz1+z2thepolesoffareiand−i(simples)sowehave∫−∞+∞f(z)dz=2iπRe(f,i)=2iπei(ξi)2i=π.e−ξcase2ifξ<oI=∫Re−iξ(−x)1+x2dx=∫Re−iξt1+t2dt(ch.−x=t)thenwetakeg(x)=e−iξt1+t2⇒I=∫−∞+∞g(z)dz=2iπRe(g,i)=2iπeξ2i=π.eξinbothcase∫Reiξx1+x2dx=πe−∣ξ∣.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com