All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 5490 by 123456 last updated on 16/May/16
∫r2−x2dx=?∫x−rr2−x2dx=??∫yxr2−x2dx=???
Answered by FilupSmith last updated on 16/May/16
letx=r⋅sin(θ)⇒dx=cos(θ)dθ∴θ=arcsin(xr)∴∫r2−x2dx=∫(r2−r2sin2θcosθ)dθ=∫cosθr2(1−sin2θ)dθ=∫rcosθcos2θdθ=r∫cos2θdθcos2(x)=cos(2x)+12=r∫12(cos(2θ)+1)dθ=r2(12sin(2θ)+θ)+c∴∫r2−x2dx=14r⋅sin(2⋅arcsin(xr))+12r⋅arcsin(xr)+c−−−−−−−−−−−−−−∫x−rr2−x2dx=r2[12sin(2⋅arcsin(xr))+arcsin(xr)]−rx=r2[12sin(2⋅arcsin(xr))+arcsin(xr)−12sin(2⋅arcsin(−rr))+r⋅arcsin(−rr)]=r2[12sin(2⋅arcsin(xr))+r⋅arcsin(xr)−12sin(−π)+π2]∴∫x−rr2−x2dx=r2[12sin(2⋅arcsin(xr))+r⋅arcsin(xr)+π2]
Terms of Service
Privacy Policy
Contact: info@tinkutara.com