All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 85721 by M±th+et£s last updated on 24/Mar/20
showthat∫0∞e−xln(x)xdx=−π(γ+ln(4))
Answered by mind is power last updated on 24/Mar/20
∫0+∞e−xln(x)xdxx=u⇒∫0+∞4e−u2ln(u)du=4∫0+∞e−u2ln(u)du∫0+∞tx−1e−tdt=Γ(x)t=u2⇒dt=2udu2∫0+∞u2x−1e−u2=Γ(x)⇒Γ′(x)=2∫2ln(u)u2x−1e−u2du=Γ′(x)⇒4∫0+∞ln(u)e−u2du=Γ′(12)=Ψ(12)Γ(12)Ψ(12)=−γ−ln(2.2)=−γ−ln(4)Γ(12)=π⇒∫0+∞e−xln(x)xdx=4∫0+∞ln(u)e−u2du=π(−γ−ln(4))=−π(γ+ln(4))
Commented by M±th+et£s last updated on 24/Mar/20
godblessyousir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com